alkyl chains
Recently Published Documents


TOTAL DOCUMENTS

1195
(FIVE YEARS 260)

H-INDEX

60
(FIVE YEARS 8)

Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 185
Author(s):  
Yao-Chih Lu ◽  
Yu-Tsz Hsu ◽  
Tsung-Yen Yang ◽  
I-Chun Liou ◽  
Sheng-Wei Wang ◽  
...  

Three new amino-s-triazine-based dendrons, 1a, 1b, and 1c, containing an aryl-CN moiety in the dendritic skeleton were prepared in 72–81% yields (1a: R1 = − N(n-C8H17)2, R2 = n-OC8H17, 1b: R1 = R2 = − N(n-C8H17)2, 1c: R1 = − N(n-C8H17)2, R2 = − N(n-C4H9)2). Dendrons 1a with N(n-C8H17)2 and n-OC8H17 peripheral substituents, surprisingly, did not show any mesogenic phase during the thermal process. However, non-mesogenic 1a can be converted to mesogenic 1b or 1c by eliminating the peripheral dipole arising from the alkoxy substituent; dendron 1b only comprising the same N(n-C8H17)2 peripheral groups showed a ~25 °C mesogenic range on heating and ~108 °C mesogenic range on cooling. In contrast, dendron 1c possessing different N(n-CmH2m+1)2 (m = 8 versus m = 4) peripheral units, having similar stacking as 1b, exhibited a columnar phase on thermal treatment, but its mesogenic range (~9 and ~66 °C on heating and cooling, respectively) was much narrower than that of 1b, attributed to 1c’s less flexible alkyl chains in the peripheral part of dendron. Dendron 1a with the alkoxy substituent in the peripheral skeleton, creating additional dipole correspondingly, thus, leads to the dendritic molecules having a non-mesogenic stacking. Without the peripheral dipole for intermolecular side-by-side interaction, dendrons 1b and 1c exhibit a columnar phase on thermal treatment because of the vibration from the peripheral alkyl chain.


Author(s):  
Jana Juráková ◽  
Jana Midlikova ◽  
Jakub Hrubý ◽  
Andrii Kliuikov ◽  
Vinicius Tadeu Santana ◽  
...  
Keyword(s):  

Four pentacoordinate complexes 1-4 of the type [Co(L1)X2] and [Co(L2)X2] (where L1=2,6-bis(1-octyl-1H-benzimidazol-2-yl)pyridine for 1 and 2, L2=2,6-bis(1-dodecyl-1H-benzimidazol -2-yl)-pyridine for 3 and 4; X = Cl- for 1 and 3, X...


Author(s):  
Xu-Ying Liu ◽  
Jing-Bo Yang ◽  
Cheng-Yan Wu ◽  
Quan Tang ◽  
Zhong-Lin Lu ◽  
...  

Six amphiphiles (TTC-L-M-1/2/3/4/5/6), each consisting of hydrophilic macrocyclic polyamine triazole-[12]aneN3 (M) and hydrophobic photosensitizer tetraphenylethenethiophene modified cyanoacrylate (TTC) moiety linked with alkyl chains (L), have been designed and synthesized for...


2021 ◽  
Vol 243 (1) ◽  
Author(s):  
Cs. Várhelyi ◽  
Z. Homonnay ◽  
R. Szalay ◽  
Gy. Pokol ◽  
I-M. Szilágyi ◽  
...  

AbstractDioximes as ligands are used as analytical reagents and serve as models for biological systems as well as catalysts in chemical processes. A number of novel mixed complexes of the type [Fe(DioxH)2(amine)2] have been prepared and characterised by FTIR, 57Fe Mössbauer and mass spectroscopy by us. We have found strong Fe–N donor acceptor interactions and iron occurred in low-spin FeII state in all complexes. Later, we have also found that the incorporation of branching alkyl chains (isopropyl) in the complexes alters the Fe–N bond length and results in high-spin iron(II) state [1, 2]. The question arises: can the spin state of iron be manipulated generally by replacing the short alkyl chains with high volume demand ones in Fe-azomethine-amine complexes? To answer the question we have synthetized novel iron-bis-glioxime and iron-tris-gloxime complexes when long chain alkyl or aromatic ligands replaced the short alkyl ones and studied by 57Fe Mössbauer spectroscopy, MS, FTIR, UV-VIS, TG-DTA-DTG and XRD methods. Novel iron-bis-glyoxime and iron-tris-glyoxime type complexes, [Fe(Diethyl-Diox)3(BOH)2], [Fe(Diethyl-Diox)3(BOEt)2] and [Fe(phenyl-Me-Diox)3(BOEt)2], were synthesized similarly as described in [2]. The FTIR, UV-VIS, TG-DTA-DTG and MS measurements indicated that the expected novel complexes could be successfully synthesized.


Lubricants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Andreas Conrad ◽  
Annika Hodapp ◽  
Bernhard Hochstein ◽  
Norbert Willenbacher ◽  
Karl-Heinz Jacob

This study investigates crystallization, melting and glass transition of Li- and Ca-12-hydroxystearate greases in relation to the pour point of the corresponding oils. The base oils for the greases are mineral oil, polyalphaolefin, alkylated naphthalene, propylene glycol, and trimellitate. For the mineral oil-based greases the crystallization temperature Tc increases and the melting temperature Tm decreases upon addition of thickener. The pour point of the mineral oil then is 3 K below Tc and does not properly define the lowest application temperature for mineral oil (MO) based greases. Both thickeners induce a small increase of the glass transition temperature (1–3 K) of the synthetic oils polyalphaolefin, alkylated naphthalene, propylene glycol. The pour point of the base oils correlates well with the onset of the glass transition in the corresponding grease indicated by a sharp increase in grease viscosity. Pure trimellitate with unbranched alkyl chains does not crystallize upon cooling but shows noticeable supercooling and cold crystallization. As the percentage of thickener in corresponding greases increases, more oil crystallizes upon cooling 20 K above the crystallization temperature of the trimellitate without thickener (−44 °C). Here, the thickener changes the crystallization behavior from homogeneous to heterogeneous and thus acts as a crystallization nucleus. The pour point of the base oil does not provide information on the temperature below which the greases stiffen significantly due to crystallization.


2021 ◽  
Vol 27 (6) ◽  
pp. 210496-0
Author(s):  
Tae-Kyoung Kim ◽  
Woo-Seok Choe ◽  
Taeyeon Kim ◽  
Seon-Ha Chae ◽  
Yu Sik Hwang ◽  
...  

Because disinfectants have been essential during the COVID-19 pandemic, the global demand for benzalkonium chlorides (BACs) has significantly increased. BACs can inactivate coronaviruses, but are known as toxic. In this study, we investigated the adsorption mechanisms of BAC12, BAC14, and BAC16 in water using powdered activated carbon (PAC). The effects of the reaction time, pH, and temperature on the adsorption kinetics of BACs were examined. The adsorption reaction followed pseudo-second-order kinetics, and better fitted to the Langmuir isotherm than the Freundlich isotherm. The best adsorption of BACs was achieved at neutral pH conditions. Thermodynamic analysis revealed that adsorption of BACs onto PAC is a spontaneous and endothermic process. Competitive adsorption experiments revealed that BACs with longer alkyl chains were adsorbed more effectively onto PAC than shorter alkyl chain BACs, implying that, while the electrostatic interaction is an important adsorption mechanism for BAC12, van der Waals interaction plays a more important role during the adsorption of BAC14 and BAC16. Finally, we observed the partial detoxification (69%) BAC in adsorption treated water with PAC using a Microtox test.


2021 ◽  
Vol 33 (8) ◽  
pp. 082501
Author(s):  
Erin N Lang ◽  
Shelley A Claridge

Abstract Many technical-grade reagents, including oleylamine, are broadly used as ligands in nanocrystal synthesis, allowing for cost-effective, and more environmentally friendly, preparation of materials in useful quantities. Impurities can represent 30% or more of these reagent blends, and have frequently emerged as substantial drivers of nanocrystal morphology, assembly, or other physical properties, making it important to understand their composition. Some functional alkyl reagents are derived from natural sources (e.g. often beef tallow, in the case of oleylamine), introducing alkyl chain structures very different than those that might be expected as side products of synthesis from pure feedstocks. Additionally, impurities can exhibit variations based on biological factors (e.g. species, diet, season). In biology, blends of alkyl chains allow for surprisingly sophisticated function of amphiphiles in the cell membrane, pointing to the possibility of similar control in synthetic materials if reagent composition were either better controlled or better understood. Here, we provide brief context on the breadth of roles technical-grade impurities have played in nanocrystal materials, followed by a perspective on oleylamine impurities, their physical properties, and their potential contributions to nanomaterial function.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7255
Author(s):  
Andriani Furoida ◽  
Misato Daitani ◽  
Kyohei Hisano ◽  
Osamu Tsutsumi

Gold(I) complexes, enabling to form linear coordination geometry, are promising materials for manifesting both aggregation-induced emission (AIE) behavior due to strong intermolecular Au–Au (aurophilic) interactions and liquid crystalline (LC) nature depending on molecular geometry. In this study, we synthesized several gold(I) complexes with rod-like molecular skeletons where we employed a mesogenic biphenylethynyl ligand and an isocyanide ligand with flexible alkoxyl or alkyl chains. The AIE behavior and LC nature were investigated experimentally and computationally. All synthesized gold(I) complexes exhibited AIE properties and, in crystal, room-temperature phosphorescence (RTP) with a relatively high quantum yields of greater than 23% even in air. We have demonstrated that such strong RTP are drastically changed depending on the crystal-size and/or crystal growth process that changes quality of crystals as well as the aggregate structure, of e.g., Au–Au distance. Moreover, the complex with longer flexible chains showed LC nature where RTP can be observed. We expect these rod-like gold(I) complexes to have great potential in AIE-active LC phosphorescent applications such as linearly/circularly polarizing phosphorescence materials.


Sign in / Sign up

Export Citation Format

Share Document