One‐dimensional Brownian motion near an absorbing boundary: Solution to the steady state Fokker–Planck equation

1983 ◽  
Vol 79 (5) ◽  
pp. 2302-2307 ◽  
Author(s):  
Y. S. Mayya ◽  
D. C. Sahni
2020 ◽  
Vol 30 (04) ◽  
pp. 685-725 ◽  
Author(s):  
Giulia Furioli ◽  
Ada Pulvirenti ◽  
Elide Terraneo ◽  
Giuseppe Toscani

We introduce a class of new one-dimensional linear Fokker–Planck-type equations describing the dynamics of the distribution of wealth in a multi-agent society. The equations are obtained, via a standard limiting procedure, by introducing an economically relevant variant to the kinetic model introduced in 2005 by Cordier, Pareschi and Toscani according to previous studies by Bouchaud and Mézard. The steady state of wealth predicted by these new Fokker–Planck equations remains unchanged with respect to the steady state of the original Fokker–Planck equation. However, unlike the original equation, it is proven by a new logarithmic Sobolev inequality with weight and classical entropy methods that the solution converges exponentially fast to equilibrium.


Author(s):  
Ali Khalili Golmankhaneh ◽  
Saleh Ashrafi ◽  
Dumitru Baleanu ◽  
Arran Fernandez

AbstractIn this paper, we have investigated the Langevin and Brownian equations on fractal time sets using Fα-calculus and shown that the mean square displacement is not varied linearly with time. We have also generalized the classical method of deriving the Fokker–Planck equation in order to obtain the Fokker–Planck equation on fractal time sets.


1978 ◽  
Vol 45 (1) ◽  
pp. 175-180 ◽  
Author(s):  
J. B. Roberts

A simple numerical scheme is proposed for computing the probability of first passage failure, P(T), in an interval O-T, for oscillators with nonlinear damping. The method depends on the fact that, when the damping is light, the amplitude envelope, A(t), can be accurately approximated as a one-dimensional Markov process. Hence, estimates of P(T) are found, for both single and double-sided barriers, by solving the Fokker-Planck equation for A(t) with an appropriate absorbing barrier. The numerical solution of the Fokker-Planck equation is greatly simplified by using a discrete time random walk analog of A(t), with appropriate statistical properties. Results obtained by this method are compared with corresponding digital simulation estimates, in typical cases.


Sign in / Sign up

Export Citation Format

Share Document