Electronic transport properties on transition-metal terminated zigzag graphene nanoribbons

2012 ◽  
Vol 111 (11) ◽  
pp. 113708 ◽  
Author(s):  
Can Cao ◽  
Ling-Na Chen ◽  
Meng-Qiu Long ◽  
Wei-Rong Huang ◽  
Hui Xu
RSC Advances ◽  
2017 ◽  
Vol 7 (12) ◽  
pp. 7368-7374 ◽  
Author(s):  
Xiaohui Jiang ◽  
Dongqing Zou ◽  
Bin Cui ◽  
Changfeng Fang ◽  
Wen Liu ◽  
...  

The spin-polarized electronic transport properties of zigzag graphene nanoribbons (ZGNRs) and boron nitride nanoribbons (ZBNNRs) heterojunctions with a boron vacancy are investigated under an external electric field.


2018 ◽  
Vol 28 (3) ◽  
pp. 201 ◽  
Author(s):  
Tien Thanh Nguyen ◽  
Hoc Thai Bui ◽  
Ut Van Nguyen ◽  
Tuan Le

Influences of the symmetric Stone-Wales (SW) defect on the electronic transport properties of the zigzag graphene nanoribbons (ZGNRs) has been studied using $\it{ab}$ $\it{ initio}$ simulation based on density functional theory (DFT) combined with non-equilibrium Green's function (NEGF) technique. The calculated transmission spectra T(E) at various bias windows, device densities of states (DDOS), current characteristics as well as local density of states (LDOS) of the defective asymmetric and symmetric ZGNRs are presented in comparison of those for the pristine ZGNRs. It has been established the metallic character of the electronic transport in asymmetric ZGNRs, and in symmetric ones, the current has a semiconductor behavior, with negative differential resistance (NDR) effect. Symmetric SW defect, as a most unfavorable SW defect type for electric conductance, remarkably decreases the current values, but does not change the character of conductivity in both the asymmetric and symmetric ZGNRs. NDR has been explained by the altering by SW defect the number of frontier molecular orbitals entering bias windows.


2014 ◽  
Vol 28 (08) ◽  
pp. 1450019 ◽  
Author(s):  
LILING CUI ◽  
BINGCHU YANG ◽  
XINMEI LI ◽  
JUN HE ◽  
MENGQIU LONG

Using nonequlilibrium Green's functions in combination with the density-functional theory, we investigate the spin transport properties of molecular junction based on metal ( Cu , Fe ) phthalocyanines between V-shaped zigzag-edged graphene nanorribons. The results show that the electronic transport properties mainly depend on the center transition metal. The negative differential resistance behaviors and spin splitting phenomenon can be observed.


2018 ◽  
Vol 35 (6) ◽  
pp. 067101
Author(s):  
Yang Liu ◽  
Cai-Juan Xia ◽  
Bo-Qun Zhang ◽  
Ting-Ting Zhang ◽  
Yan Cui ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document