Size effect of V-shaped notches on the electronic transport properties of zigzag graphene nanoribbons

2017 ◽  
Vol 10 ◽  
pp. 10-14 ◽  
Author(s):  
Wen Liu ◽  
Fanhua Meng ◽  
Changfeng Fang ◽  
Jianhua Zhao ◽  
Jie Cheng ◽  
...  
RSC Advances ◽  
2017 ◽  
Vol 7 (12) ◽  
pp. 7368-7374 ◽  
Author(s):  
Xiaohui Jiang ◽  
Dongqing Zou ◽  
Bin Cui ◽  
Changfeng Fang ◽  
Wen Liu ◽  
...  

The spin-polarized electronic transport properties of zigzag graphene nanoribbons (ZGNRs) and boron nitride nanoribbons (ZBNNRs) heterojunctions with a boron vacancy are investigated under an external electric field.


2018 ◽  
Vol 28 (3) ◽  
pp. 201 ◽  
Author(s):  
Tien Thanh Nguyen ◽  
Hoc Thai Bui ◽  
Ut Van Nguyen ◽  
Tuan Le

Influences of the symmetric Stone-Wales (SW) defect on the electronic transport properties of the zigzag graphene nanoribbons (ZGNRs) has been studied using $\it{ab}$ $\it{ initio}$ simulation based on density functional theory (DFT) combined with non-equilibrium Green's function (NEGF) technique. The calculated transmission spectra T(E) at various bias windows, device densities of states (DDOS), current characteristics as well as local density of states (LDOS) of the defective asymmetric and symmetric ZGNRs are presented in comparison of those for the pristine ZGNRs. It has been established the metallic character of the electronic transport in asymmetric ZGNRs, and in symmetric ones, the current has a semiconductor behavior, with negative differential resistance (NDR) effect. Symmetric SW defect, as a most unfavorable SW defect type for electric conductance, remarkably decreases the current values, but does not change the character of conductivity in both the asymmetric and symmetric ZGNRs. NDR has been explained by the altering by SW defect the number of frontier molecular orbitals entering bias windows.


2018 ◽  
Vol 35 (6) ◽  
pp. 067101
Author(s):  
Yang Liu ◽  
Cai-Juan Xia ◽  
Bo-Qun Zhang ◽  
Ting-Ting Zhang ◽  
Yan Cui ◽  
...  

2015 ◽  
Vol 1727 ◽  
Author(s):  
Yasutaka Nishida ◽  
Takashi Yoshida ◽  
Fumihiko Aiga ◽  
Yuichi Yamazaki ◽  
Hisao Miyazaki ◽  
...  

ABSTRACTIn this study, we investigated the influence of line defects consisting of pentagon-heptagon (5-7) pairs on the electronic transport properties of zigzag-edged and armchair-edged graphene nanoribbons (GNRs). Using the first-principles density functional theory, we study their electronic properties. To investigate their current-voltage (I-V) characteristics at low bias voltage (∼ 1 meV), we use the nonequilibrium Green’s function method. As a result, we found that the conductance of the GNRs having a connected line defect between source and drain shows better performance than that of the ideal zigzag-edged GNRs (ZGNRs). A detailed investigation of the transmission spectra and the wave function around the Fermi level reveals that the line defects arranged along the transport direction work similar to an edge state of the ZGNRs and can be an additional conduction channel. Our results suggest that such a line defect can be effective for low-resistance GNR interconnects.


Sign in / Sign up

Export Citation Format

Share Document