scholarly journals On the double diffusive convection flow of Eyring-Powell fluid due to cone through a porous medium with Soret and Dufour effects

AIP Advances ◽  
2015 ◽  
Vol 5 (5) ◽  
pp. 057140 ◽  
Author(s):  
Najeeb Alam Khan ◽  
Faqiha Sultan
2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Ramesh Chand ◽  
G. C. Rana

Double diffusive convection in a horizontal layer of Maxwell viscoelastic fluid in a porous medium in the presence of temperature gradient (Soret effects) and concentration gradient (Dufour effects) is investigated. For the porous medium Darcy model is considered. A linear stability analysis based upon normal mode technique is used to study the onset of instabilities of the Maxwell viscolastic fluid layer confined between two free-free boundaries. Rayleigh number on the onset of stationary and oscillatory convection has been derived and graphs have been plotted to study the effects of the Dufour parameter, Soret parameter, Lewis number, and solutal Rayleigh number on stationary convection.


1986 ◽  
Vol 108 (4) ◽  
pp. 872-876 ◽  
Author(s):  
N. Rudraiah ◽  
M. S. Malashetty

The effect of coupled molecular diffusion on double-diffusive convection in a horizontal porous medium is studied using linear and nonlinear stability analyses. In the case of linear theory, normal mode analysis is employed incorporating two cross diffusion terms. It is found that salt fingers can form by taking cross-diffusion terms of appropriate sign and magnitude even when both concentrations are stably stratified. The conditions for the diffusive instability are compared with those for the formation of fingers. It is shown that these two types of instability will never occur together. The finite amplitude analysis is used to derive the condition for the maintenance of fingers. The stability boundaries are drawn for three different combinations of stratification and the effect of permeability is depicted.


Sign in / Sign up

Export Citation Format

Share Document