On the well-posedness of a second order difference scheme for elliptic-parabolic equations in Hölder spaces

Author(s):  
Okan Gercek ◽  
Emel Zusi
2012 ◽  
Vol 2012 ◽  
pp. 1-13
Author(s):  
Allaberen Ashyralyev ◽  
Okan Gercek

We are interested in studying a second order of accuracy implicit difference scheme for the solution of the elliptic-parabolic equation with the nonlocal boundary condition. Well-posedness of this difference scheme is established. In an application, coercivity estimates in Hölder norms for approximate solutions of multipoint nonlocal boundary value problems for elliptic-parabolic differential equations are obtained.


2010 ◽  
Vol 2010 ◽  
pp. 1-17 ◽  
Author(s):  
Allaberen Ashyralyev ◽  
Okan Gercek

A second order of accuracy difference scheme for the approximate solution of the abstract nonlocal boundary value problem−d2u(t)/dt2+Au(t)=g(t),(0≤t≤1),du(t)/dt−Au(t)=f(t),(−1≤t≤0),u(1)=u(−1)+μfor differential equations in a Hilbert spaceHwith a self-adjoint positive definite operatorAis considered. The well posedness of this difference scheme in Hölder spaces is established. In applications, coercivity inequalities for the solution of a difference scheme for elliptic-parabolic equations are obtained and a numerical example is presented.


2016 ◽  
Vol 138 (9) ◽  
Author(s):  
J. Granata ◽  
L. Xu ◽  
Z. Rusak ◽  
S. Wang

Current simulations of swirling flows in pipes are limited to relatively low Reynolds number flows (Re < 6000); however, the characteristic Reynolds number is much higher (Re > 20,000) in most of engineering applications. To address this difficulty, this paper presents a numerical simulation algorithm of the dynamics of incompressible, inviscid-limit, axisymmetric swirling flows in a pipe, including the vortex breakdown process. It is based on an explicit, first-order difference scheme in time and an upwind, second-order difference scheme in space for the time integration of the circulation and azimuthal vorticity. A second-order Poisson equation solver for the spatial integration of the stream function in terms of azimuthal vorticity is used. In addition, when reversed flow zones appear, an averaging step of properties is applied at designated time steps. This adds slight artificial viscosity to the algorithm and prevents growth of localized high-frequency numerical noise inside the breakdown zone that is related to the expected singularity that must appear in any flow simulation based on the Euler equations. Mesh refinement studies show agreement of computations for various mesh sizes. Computed examples of flow dynamics demonstrate agreement with linear and nonlinear stability theories of vortex flows in a finite-length pipe. Agreement is also found with theoretically predicted steady axisymmetric breakdown states in a pipe as flow evolves to a time-asymptotic state. These findings indicate that the present algorithm provides an accurate prediction of the inviscid-limit, axisymmetric breakdown process. Also, the numerical results support the theoretical predictions and shed light on vortex dynamics at high Re.


Sign in / Sign up

Export Citation Format

Share Document