Potential wave energy production by different wave energy converters around Sicily

2015 ◽  
Vol 7 (6) ◽  
pp. 061701 ◽  
Author(s):  
C. Iuppa ◽  
L. Cavallaro ◽  
E. Foti ◽  
D. Vicinanza
Author(s):  
Heather Peng ◽  
Wei Qiu ◽  
Don Spencer

Wave energy converters use the motion of floating or submerged bodies to extract energy from the waves. Power absorption can be simulated using a simple linear damper with a resistance to motion which is proportional to velocity. Because of the interaction between energy production and motion, there will be an optimum rate of energy production for each wave frequency. Too much damping or too little damping can cause little energy produced. The wave absorption range also depends on the tuned frequency. In this paper, the maximum rates of energy absorption for submerged and floating wave energy converters are evaluated by employing the panel-free method for the motions of the converters in the frequency domain. A general expression for the wave power absorption is described. Numerical studies show that the optimal energy efficiencies of wave energy converters can be well predicted by employing the panel-free method for motion computations.


2020 ◽  
Vol 132 ◽  
pp. 110011 ◽  
Author(s):  
D.V. Bertram ◽  
A.H. Tarighaleslami ◽  
M.R.W. Walmsley ◽  
M.J. Atkins ◽  
G.D.E. Glasgow

2020 ◽  
Vol 53 (2) ◽  
pp. 12295-12300
Author(s):  
Paula B. Garcia-Rosa ◽  
Olav B. Fosso ◽  
Marta Molinas

Author(s):  
Eva Loukogeorgaki ◽  
Constantine Michailides ◽  
George Lavidas ◽  
Ioannis K. Chatjigeorgiou

2020 ◽  
Vol 53 (2) ◽  
pp. 12815-12821
Author(s):  
Juan Guerrero-Fernández ◽  
Oscar J. González-Villarreal ◽  
John Anthony Rossiter ◽  
Bryn Jones

Author(s):  
Manuel García-Díaz ◽  
Bruno Pereiras ◽  
Celia Miguel-González ◽  
Laudino Rodríguez ◽  
Jesús Fernández-Oro

Sign in / Sign up

Export Citation Format

Share Document