scholarly journals Assessment of the influence of the distance between two wave energy converters on energy production

2010 ◽  
Vol 4 (6) ◽  
pp. 592 ◽  
Author(s):  
A. Babarit ◽  
B. Borgarino ◽  
P. Ferrant ◽  
A. Clément
Author(s):  
Heather Peng ◽  
Wei Qiu ◽  
Don Spencer

Wave energy converters use the motion of floating or submerged bodies to extract energy from the waves. Power absorption can be simulated using a simple linear damper with a resistance to motion which is proportional to velocity. Because of the interaction between energy production and motion, there will be an optimum rate of energy production for each wave frequency. Too much damping or too little damping can cause little energy produced. The wave absorption range also depends on the tuned frequency. In this paper, the maximum rates of energy absorption for submerged and floating wave energy converters are evaluated by employing the panel-free method for the motions of the converters in the frequency domain. A general expression for the wave power absorption is described. Numerical studies show that the optimal energy efficiencies of wave energy converters can be well predicted by employing the panel-free method for motion computations.


2020 ◽  
Vol 53 (2) ◽  
pp. 12295-12300
Author(s):  
Paula B. Garcia-Rosa ◽  
Olav B. Fosso ◽  
Marta Molinas

Author(s):  
Eva Loukogeorgaki ◽  
Constantine Michailides ◽  
George Lavidas ◽  
Ioannis K. Chatjigeorgiou

2020 ◽  
Vol 53 (2) ◽  
pp. 12815-12821
Author(s):  
Juan Guerrero-Fernández ◽  
Oscar J. González-Villarreal ◽  
John Anthony Rossiter ◽  
Bryn Jones

Author(s):  
Manuel García-Díaz ◽  
Bruno Pereiras ◽  
Celia Miguel-González ◽  
Laudino Rodríguez ◽  
Jesús Fernández-Oro

2021 ◽  
Vol 13 (11) ◽  
pp. 2070
Author(s):  
Ana Basañez ◽  
Vicente Pérez-Muñuzuri

Wave energy resource assessment is crucial for the development of the marine renewable industry. High-frequency radars (HF radars) have been demonstrated to be a useful wave measuring tool. Therefore, in this work, we evaluated the accuracy of two CODAR Seasonde HF radars for describing the wave energy resource of two offshore areas in the west Galician coast, Spain (Vilán and Silleiro capes). The resulting wave characterization was used to estimate the electricity production of two wave energy converters. Results were validated against wave data from two buoys and two numerical models (SIMAR, (Marine Simulation) and WaveWatch III). The statistical validation revealed that the radar of Silleiro cape significantly overestimates the wave power, mainly due to a large overestimation of the wave energy period. The effect of the radars’ data loss during low wave energy periods on the mean wave energy is partially compensated with the overestimation of wave height and energy period. The theoretical electrical energy production of the wave energy converters was also affected by these differences. Energy period estimation was found to be highly conditioned to the unimodal interpretation of the wave spectrum, and it is expected that new releases of the radar software will be able to characterize different sea states independently.


Sign in / Sign up

Export Citation Format

Share Document