scholarly journals Scale-invariant gauge theories of gravity: Theoretical foundations

2016 ◽  
Vol 57 (9) ◽  
pp. 092505 ◽  
Author(s):  
A. N. Lasenby ◽  
M. P. Hobson
2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Daniel Elander ◽  
Michele Frigerio ◽  
Marc Knecht ◽  
Jean-Loïc Kneur

Abstract We study strongly-coupled, approximately scale-invariant gauge theories, which develop a mass gap in the infrared. We argue that a large number of fermion flavours is most suitable to provide an ultraviolet completion for the composite Higgs scenario. The holographic approach allows to describe the qualitative features of the non-perturbative dynamics in the Veneziano limit. We introduce new bottom-up holographic models, which incorporate the backreaction of flavour on the geometry, and show that this can correlate the mass gap to the scale of flavour-symmetry breaking. We compute the mass spectrum for the various composite bosonic states, and study its dependence on the scaling dimension of the symmetry-breaking operators, as well as on the number of flavours. The different regions with a light dilaton are critically surveyed. We carefully assess the domain of validity of the holographic approach, and compare it with lattice simulations and the Nambu-Jona-Lasinio model.


2006 ◽  
Vol 21 (03) ◽  
pp. 405-447 ◽  
Author(s):  
MASSIMO DI PIERRO

The lattice formulation provides a way to regularize, define and compute the Path Integral in a Quantum Field Theory. In this paper, we review the theoretical foundations and the most basic algorithms required to implement a typical lattice computation, including the Metropolis, the Gibbs sampling, the Minimal Residual, and the Stabilized Biconjugate inverters. The main emphasis is on gauge theories with fermions such as QCD. We also provide examples of typical results from lattice QCD computations for quantities of phenomenological interest.


2017 ◽  
Vol 95 (12) ◽  
Author(s):  
J. Struckmeier ◽  
J. Muench ◽  
D. Vasak ◽  
J. Kirsch ◽  
M. Hanauske ◽  
...  

2014 ◽  
Vol 29 (25) ◽  
pp. 1445006 ◽  
Author(s):  
L. Del Debbio

The existence of strongly-interacting infrared (IR) fixed points in gauge theories can be studied using field theories defined on a lattice. Besides their academic interest, it has been argued that these theories could be used as a starting point to construct viable models of electroweak symmetry breaking (EWSB). A quantitative description of the large-distance dynamics is mandatory in order to develop predictive models for phenomenology. In these notes, we discuss the theoretical foundations of IR conformality, and present possible ways to study the problem using the lattice formulation of gauge theories. An overview of current results and methods is discussed.


Sign in / Sign up

Export Citation Format

Share Document