Solution of one-dimensional fractional order partial integro-differential equations using variational iteration method

Author(s):  
Amina Kassim Hussain ◽  
Nursalasawati Rusli ◽  
Fadhel Subhi Fadhel ◽  
Zainor Ridzuan Yahya
2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Asma Ali Elbeleze ◽  
Adem Kılıçman ◽  
Bachok M. Taib

We are concerned here with singular partial differential equations of fractional order (FSPDEs). The variational iteration method (VIM) is applied to obtain approximate solutions of this type of equations. Convergence analysis of the VIM is discussed. This analysis is used to estimate the maximum absolute truncated error of the series solution. A comparison between the results of VIM solutions and exact solution is given. The fractional derivatives are described in Caputo sense.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Fukang Yin ◽  
Junqiang Song ◽  
Hongze Leng ◽  
Fengshun Lu

We present a new numerical method to get the approximate solutions of fractional differential equations. A new operational matrix of integration for fractional-order Legendre functions (FLFs) is first derived. Then a modified variational iteration formula which can avoid “noise terms” is constructed. Finally a numerical method based on variational iteration method (VIM) and FLFs is developed for fractional differential equations (FDEs). Block-pulse functions (BPFs) are used to calculate the FLFs coefficient matrices of the nonlinear terms. Five examples are discussed to demonstrate the validity and applicability of the technique.


2008 ◽  
Vol 22 (23) ◽  
pp. 4041-4058 ◽  
Author(s):  
ZAID ODIBAT ◽  
SHAHER MOMANI

Comparison of homotopy perturbation method (HPM) and variational iteration method (VIM) is made, revealing that the two methods can be used as alternative and equivalent methods for obtaining analytic and approximate solutions for different types of differential equations of fractional order. Furthermore, the former is more general and powerful than the latter. Numerical results show that the two approaches are easy to implement and accurate when applied to differential equations of fractional order.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
C. Ünlü ◽  
H. Jafari ◽  
D. Baleanu

A modification of the variational iteration method (VIM) for solving systems of nonlinear fractional-order differential equations is proposed. The fractional derivatives are described in the Caputo sense. The solutions of fractional differential equations (FDE) obtained using the traditional variational iteration method give good approximations in the neighborhood of the initial position. The main advantage of the present method is that it can accelerate the convergence of the iterative approximate solutions relative to the approximate solutions obtained using the traditional variational iteration method. Illustrative examples are presented to show the validity of this modification.


2010 ◽  
Vol 65 (5) ◽  
pp. 418-430 ◽  
Author(s):  
Ahmet Yildirim

In this paper, an application of He’s variational iteration method is applied to solve nonlinear integro-differential equations. Some examples are given to illustrate the effectiveness of the method. The results show that the method provides a straightforward and powerful mathematical tool for solving various nonlinear integro-differential equations


Sign in / Sign up

Export Citation Format

Share Document