Modulational instability of electrostatic waves in a magnetized dusty plasma with kappa distributed electrons

2017 ◽  
Vol 24 (11) ◽  
pp. 113707 ◽  
Author(s):  
Naseem Akhtar ◽  
Shahzad Mahmood ◽  
Nusrat Jehan ◽  
Arshad M. Mirza
2008 ◽  
Author(s):  
S. K. Maharaj ◽  
R. Bharuthram ◽  
S. R. Pillay ◽  
S. V. Singh ◽  
R. V. Reddy ◽  
...  

2008 ◽  
Author(s):  
S. K. Maharaj ◽  
R. Bharuthram ◽  
S. R. Pillay ◽  
S. V. Singh ◽  
R. V. Reddy ◽  
...  

Gases ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 106-116
Author(s):  
Akib Al Noman ◽  
Md Khairul Islam ◽  
Mehedi Hassan ◽  
Subrata Banik ◽  
Nure Alam Chowdhury ◽  
...  

The standard nonlinear Schrödinger Equation (NLSE) is one of the elegant equations to find detailed information about the modulational instability criteria of dust-ion-acoustic (DIA) waves and associated DIA rogue waves (DIARWs) in a three-component dusty plasma medium with inertialess super-thermal kappa distributed electrons, and inertial warm positive ions and negative dust grains. It can be seen that the plasma system supports both fast and slow DIA modes under consideration of inertial warm ions along with inertial negatively charged dust grains. It is also found that the modulationally stable parametric regime decreases with κ. The numerical analysis has also shown that the amplitude of the first and second-order DIARWs decreases with ion temperature. These results are to be considered the cornerstone for explaining the real puzzles in space and laboratory dusty plasmas.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shubhra Bhowmick ◽  
Nabakumar Ghosh ◽  
Biswajit Sahu

Abstract A theoretical investigation has been carried out to explore the modulational instability (MI) of electrostatic waves in a warm multi-ion dusty plasma system containing positive ions, negative ions and positively or negatively charged dust in presence of superthermal electrons. With the help of the standard perturbation technique, it is found that the dynamics of the modulated wave is governed by a damped nonlinear Schrödinger equation (NLSE). Regions of MI of the electrostatic wave are precisely determined and the analytical solutions predict the formation of dissipative bright and dark solitons as well as dissipative first- and second-order rogue wave solutions. It is found that the striking features (viz., instability criteria, amplitude and width of rogue waves, etc.) are significantly modified by the effects of relevant plasma parameters such as degree of the electron superthermality, dust density, etc. The time dependent numerical simulations of the damped NLSE reveal that modulated electrostatic waves exhibit breather like structures. Moreover, phase plane analysis has been performed to study the dynamical behaviors of NLSE by using the theory of dynamical system. It is remarked that outcome of present study may provide physical insight into understanding the generation of several types of nonlinear structures in dusty plasma environments, where superthermal electrons, positive and negative ions are accountable (e.g. Saturn’s magnetosphere, auroral zone, etc.).


2001 ◽  
Vol 65 (2) ◽  
pp. 97-105 ◽  
Author(s):  
P. K. SHUKLA ◽  
A. A. MAMUN

A rigorous theoretical investigation is made of obliquely propagating low-frequency electrostatic waves in a cylindrically bounded magnetized dusty plasma. A number of different modes, such as modified convective cells, coupled ion-cyclotron and dust-ion-acoustic waves, modified lower-hybrid waves, coupled dust-cyclotron and dust-acoustic waves, etc., are investigated. It is shown that the effects of the cylindrical boundary of the dusty plasma system, the external magnetic field, and the obliqueness (of the propagating modes) significantly modify the dispersion properties of these different low-frequency electrostatic waves. The implications of our results for laboratory dusty magnetoplasmas are briefly pointed out.


Sign in / Sign up

Export Citation Format

Share Document