hybrid waves
Recently Published Documents


TOTAL DOCUMENTS

627
(FIVE YEARS 49)

H-INDEX

38
(FIVE YEARS 3)

2021 ◽  
Author(s):  
P K Sharma ◽  
D Raju ◽  
Surya Kumar Pathak ◽  
R Srinivasan ◽  
Kiran Ambulkar ◽  
...  

Abstract The steadystate superconducting tokamak (SST1) is aimed to demonstrate long pulse plasma discharges employing non-inductive current drive by means of lower hybrid current drive (LHCD) system. The major and minor radius of the machine is 1.1m and 0.2m respectively. The LHCD system for SST1 comprises of klystrons, each rated for 0.5MW-CW rf power at a frequency of 3.7 GHz. The grill antenna comprises of two rows, each row accommodating 32 waveguide elements. Electron cyclotron resonance (ECR) breakdown assisted Ohmic plasma is formed in SST1 to overcome the issues associated with low loop voltage start-ups. With recent modifications in the poloidal coils configuration, even with narrow EC pulse (~50ms), good repeatable and consistent Ohmic plasmas could be produced which helped in carrying out LHCD current drive experiments on SST1. These experiments demonstrated both fully as well as partially driven non-inductive plasma current in SST1 tokamak. Discharges with zero loop voltages were obtained. The interaction of lower hybrid waves with plasma and generation of suprathermal electrons could be established using energy spectra measured by CdTe detectors. Various other signatures like drop in loop voltages, negative loop voltages, spikes in hard x-rays and increase in 2nd harmonic ECE signal, further confirmed the current drive by LHW’s. The beneficial effect of LHW’s in suppressing hard x-rays was also demonstrated in these experiments. The non-inductive current drive in SST1 could also be established by modulating LH power. The longest discharge of ~650ms could be obtained in SST1 with the help of LHW’s. In this paper, the experimental results obtained with LHCD experiments on SST1 is reported and discussed in more details.


2021 ◽  
Vol 33 (11) ◽  
pp. 117120
Author(s):  
Gao-Fu Deng ◽  
Yi-Tian Gao ◽  
Xin Yu ◽  
Cui-Cui Ding ◽  
Ting-Ting Jia ◽  
...  

Author(s):  
C. Moser ◽  
J. LaBelle ◽  
R. Roglans ◽  
J.W. Bonnell ◽  
I.H. Cairns ◽  
...  

2021 ◽  
Author(s):  
Gao-Fu Deng ◽  
Yi-Tian Gao ◽  
Xin Yu ◽  
Cui-Cui Ding ◽  
Ting-Ting Jia ◽  
...  

Abstract Shallow water waves are studied for the applications in hydraulic engineering and environmental engineering. In this paper, a (2+1)-dimensional extended shallow water wave equation is investigated. Hybrid solutions consisting of H -soliton, M -breather and J -lump solutions have been constructed via the modified Pfaffian technique, where H , M and J are the positive integers. One-breather solutions with a real function ϕ ( y ) are derived, where y is the scaled space variable, we notice that ϕ ( y ) influences the shapes of the background planes. Discussions on the hybrid waves consisting of one breather and one soliton indicate that the one breather is not affected by one soliton after interaction. One-lump solutions with ϕ ( y ) are obtained with the condition, where k 1 R and k 1 I are the real constants, we notice that the one lump consists of two low valleys and one high peak, as well as the amplitude and velocity keep invariant during its propagation. Hybrid waves consisting of the one lump and one soliton imply that the shape of the one soliton becomes periodic when ϕ ( y ) is changed from a linear function to a periodic function.


2021 ◽  
Vol 87 (4) ◽  
Author(s):  
Jun Zhu ◽  
Xiaoshan Liu ◽  
Yuee Luo

The propagation of extraordinary and upper-hybrid waves in spin quantum magnetoplasmas with vacuum polarization effect is investigated. Based on the quantum magnetohydrodynamics model including Bohm potential, arbitrary relativistic degeneracy pressure and spin force, and Maxwell's equations modified by the spin current and vacuum polarization current, the dispersion relations of extraordinary and upper-hybrid waves are derived. The analytical and numerical results show that quantum effects (Bohm potential, degeneracy pressure and spin magnetization energy) and the vacuum polarization effect modify the propagation of the extraordinary wave. Under the action of a strong magnetic field, the plasma frequency is obviously increased by the vacuum polarization effect.


2021 ◽  
Author(s):  
Chrystal Moser ◽  
James LaBelle ◽  
Roger Roglans ◽  
John W. Bonnell ◽  
Iver H. Cairns ◽  
...  

2021 ◽  
Vol 28 (7) ◽  
pp. 072506
Author(s):  
W. Choi ◽  
F. M. Poli ◽  
M. H. Li ◽  
S. G. Baek ◽  
M. Gorenlenkova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document