dust acoustic
Recently Published Documents


TOTAL DOCUMENTS

905
(FIVE YEARS 131)

H-INDEX

57
(FIVE YEARS 4)

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 227
Author(s):  
Fedor M. Trukhachev ◽  
Roman E. Boltnev ◽  
Mikhail M. Vasiliev ◽  
Oleg F. Petrov

The nonlinear dust-acoustic instability in the condensed submicron fraction of dust particles in the low-pressure glow discharge at ultra-low temperatures is experimentally and theoretically investigated. The main discharge parameters are estimated on the basisof the dust-acoustic wave analysis. In particular, the temperature and density of ions, as well as the Debye radius, are determined. It is shown that the ion temperature exceeds the temperature of the neutral gas. The drift characteristics of all plasma fractions are estimated. The reasons for the instability excitation are considered.


2021 ◽  
Author(s):  
R. E. Tolba ◽  
M E Yahia ◽  
Waleed Moslem

Abstract Different types of waves and their nature in the Jovian middle magnetosphere are still not clear or specified. For this purpose, a generalized hydrodynamic model for an arbitrary amplitude dust-acoustic waves is built for true Jovian magnetosphere. The plasma system consists of positive dust grains, Maxwellian ions and electrons. An evolution equation containing a Sagdeev potential is derived, and its numerical analysis is presented. Unexpectedly, the given data yielded cnoidal waves only with positive potential. The effect of the external magnetic field, Mach number, and directional cosine parameters are studied and manipulated. We think that the present results are important in realizing the main waves in the Jovian magnetosphere, and the possible correlation to its particlesístability and pole acoustic waves.


2021 ◽  
Author(s):  
Badriah Alotaibi

Abstract Nonlinear propagation of dust-acoustic waves DAWs in a weakly collisional dusty plasma comprising warm adiabatic fluid dust particles, isothermal electrons, and ions is investigated. We used the reductive perturbation theory to reduce the basic set of fluid equations to one evolution equation, namely damped Kadomtsev--Petviashivili (DKP). The analytical stationary solutions of the DKP equation are numerically analyzed, and the effect of various dusty plasma parameters on DAWs wave propagation is taken into account. We obtained, blast, anti-kink, periodic cnoidal and cnoidal waves. It is well known that explosive waves are a double edged sword. They can be seen, for example, in the atmosphere, or in engineering applications in metal coating. _______________________________________________


2021 ◽  
Vol 61 (6) ◽  
pp. 888-895
Author(s):  
T. I. Morozova ◽  
S. I. Popel

Abstract This is a study of the possible modulational instability of electromagnetic waves in meteoroid wakes associated with the dust acoustic mode at altitudes of 80–120 km, which is a linear stage of modulational interaction. The parameters of meteoroid wakes at different altitudes in the Earth’s ionosphere are considered. It is shown that the charging of dust particles of meteoric matter creates conditions for the occurrence of dust acoustic waves. Dust acoustic disturbances are excited due to the modulational instability of electromagnetic waves from the meteoric trail. The influence of neutrals on the development of modulational interaction is taken into account. The concentration of neutrals in meteoric wakes is higher than the concentration of neutrals in the Earth’s ionosphere. It has been found that the condition for the excitation of a dust acoustic wave is satisfied for the typical parameters of dusty plasma of meteoroid wakes at altitudes of 100–120 km. Due to collisions between dust and neutrals, the development of modulation instability is suppressed at altitudes of 80–90 km, while inelastic collisions of neutrals with electrons and ions do not affect the development of modulational instability. The modulational instability of electromagnetic waves can explain the occurrence of low-frequency noise during the passage of meteoric bodies in a frequency range characteristic of dust acoustic waves. It is shown that the modulation instability has time to develop for characteristic temperatures and particle concentrations in meteoroid wakes. Equations for the charging of dust particles in meteoroid wakes are given. It has been found that the dust is positively charged, both in the daytime and at night, due to intense emission currents from the surface of dust particles.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Uday Narayan Ghosh ◽  
Prasanta Chatterjee ◽  
Barjinder Kaur

Abstract A theoretical investigation by an all-inclusive adaptation of the PLK strategy is carried out in order to study the inward and outward interaction between two cylindrical and spherical dust acoustic solitary waves (DASWs) in an unmagnetized dusty plasma consisting of nonthermal distributed ions, negatively and positively charged dust grains along with electrons featuring Boltzmann’s distribution. The interactions and collisions between two cylindrical and spherical geometries at different time scales are studied. Also the combined effects of the nonthermality of ions, ion to electron temperature ratio as well as mass ratio of positive to negative dust grains have been studied in detail on the phase shifts raised due to collision. It has been seen that the properties of the cooperation of DASWs in cylindrical and spherical shaped are distinct.


2021 ◽  
Vol 28 (10) ◽  
pp. 103701
Author(s):  
Krishan Kumar ◽  
P. Bandyopadhyay ◽  
Swarnima Singh ◽  
Garima Arora ◽  
A. Sen

Sign in / Sign up

Export Citation Format

Share Document