scholarly journals A new inertia weight control strategy for particle swarm optimization

Author(s):  
Xianming Zhu ◽  
Hongbo Wang
2016 ◽  
Vol 10 (4) ◽  
pp. 267-305 ◽  
Author(s):  
Kyle Robert Harrison ◽  
Andries P. Engelbrecht ◽  
Beatrice M. Ombuki-Berman

2012 ◽  
Vol 3 (4) ◽  
pp. 1-4
Author(s):  
Diana D.C Diana D.C ◽  
◽  
Joy Vasantha Rani.S.P Joy Vasantha Rani.S.P ◽  
Nithya.T.R Nithya.T.R ◽  
Srimukhee.B Srimukhee.B

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Zhizhou Wu ◽  
Zhibo Gao ◽  
Wei Hao ◽  
Jiaqi Ma

Most existing longitudinal control strategies for connected and automated vehicles (CAVs) have unclear adaptability without scientific analysis regarding the key parameters of the control algorithm. This paper presents an optimal longitudinal control strategy for a homogeneous CAV platoon. First of all, the CAV platoon models with constant time-headway gap strategy and constant spacing gap strategy were, respectively, established based on the third-order linear vehicle dynamics model. Then, a linear-quadratic optimal controller was designed considering the perspectives of driving safety, efficiency, and ride comfort with three performance indicators including vehicle gap error, relative speed, and desired acceleration. An improved particle swarm optimization algorithm was used to optimize the weighting coefficients for the controller state and control variables. Based on the Matlab/Simulink experimental simulation, the analysis results show that the proposed strategy can significantly reduce the gap error and relative speed and improve the flexibility and initiative of the platoon control strategy compared with the unoptimized strategies. Sensitivity analysis was provided for communication lag and actuator lag in order to prove the applicability and effectiveness of this proposed strategy, which will achieve better distribution of system performance.


2013 ◽  
Vol 760-762 ◽  
pp. 2194-2198 ◽  
Author(s):  
Xue Mei Wang ◽  
Yi Zhuo Guo ◽  
Gui Jun Liu

Adaptive Particle Swarm Optimization algorithm with mutation operation based on K-means is proposed in this paper, this algorithm Combined the local searching optimization ability of K-means with the gobal searching optimization ability of Particle Swarm Optimization, the algorithm self-adaptively adjusted inertia weight according to fitness variance of population. Mutation operation was peocessed for the poor performative particle in population. The results showed that the algorithm had solved the poblems of slow convergence speed of traditional Particle Swarm Optimization algorithm and easy falling into the local optimum of K-Means, and more effectively improved clustering quality.


Sign in / Sign up

Export Citation Format

Share Document