intelligent control
Recently Published Documents


TOTAL DOCUMENTS

4135
(FIVE YEARS 785)

H-INDEX

50
(FIVE YEARS 6)

2022 ◽  
Vol 12 (2) ◽  
pp. 801
Author(s):  
Youyun Wang ◽  
Yan Li ◽  
Zhuo Yang ◽  
Xin Cheng

An intelligent control strategy based on a membership cloud model in a high reliable off-grid microgrid with a reconfigurable inverter is proposed in this paper. The operating principle of the off-grid microgrid with the reconfigurable inverter is provided, which contains four operating modes. An open-circuit fault diagnosis for the inverter is presented first. The polarities of the midpoint voltages defined in the paper are used to recognize the faulty power switch. The reconfigurable inverter allows the power switches of different bridges to be reconfigured, when there are power switches faulty, to let the inverter operate in faulty state. The working principle of the reconfigurable inverter is given. The membership cloud model with two output channels is built to obtain the virtual impedance to suppress the circulating currents between inverters when the reconfigurable inverter is in faulty state. A pulse resetting method is presented. The general intelligent control strategy for the reconfigurable inverter is formed as the droop-virtual impedance-voltage-current-pulses resetting control. The validity of the intelligent control strategy of the system is verified by simulation.


2022 ◽  
Vol 9 ◽  
Author(s):  
Tao Zhang ◽  
Hua Bai ◽  
Shuyu Sun

Natural gas has been attracting increasing attentions all around the world as a relatively cleaner energy resource compared with coal and crude oil. Except for the direct consumption as fuel, electricity generation is now another environmentally-friendly utilization of natural gas, which makes it more favorable as the energy supply for urban areas. Pipeline transportation is the main approach connecting the natural gas production field and urban areas thanks to the safety and economic reasons. In this paper, an intelligent pipeline dispatch technique is proposed using deep learning methods to predict the change of energy supply to the urban areas as a consequence of compressor operations. Practical operation data is collected and prepared for the training and validation of deep learning models, and the accelerated predictions can help make controlling plans regarding compressor operations to meet the requirement in urban natural gas supply. The proposed deep neutral network is equipped with self-adaptability, which enables the general adaption on various temporal compressor conditions including failure and maintenance.


2022 ◽  
pp. 9-17
Author(s):  
MARHARYTA IVANOVA ◽  
IRYNA OLEINIKOVA

Purpose. Development of the concept of an intelligent control system for implementation in the scheme of pedestrian crossing lighting and design of a street lamp to reduces electricity costs and increases the service life of street lights, using technical devices such as dimmers and special motion sensors.Method. The research methods of theoretical analysis, modeling of appearance and creation of the scheme of intellectual control complex, basic provisions on lighting of pedestrian crossings and design of street lighting, analysis of possibilities of motion sensors and dimming at use in lighting are used.Results. Technologies of application of dimers and various motion sensors in lighting are analyzed and modern technological advantages of their use are allocated. Having identified a problem in the payment for electricity for street lighting for many local budgets, an intelligent control system for pedestrian crossing lighting was developed. The system allows obtaining of significant economic effect, reducing electricity consumption by a maximum of 70%. This saving is achieved by using dimming lamps and special narrow motion sensors, which have a viewing angle of 6 ° horizontally. At rest, the system keeps the lamp power at 50% until the person falls within the range of the sensor and the illumination rises to 100% for the set time. Specially selected sensors and their correct placement allow the system to work only when a person approaches a pedestrian crossing, and to remove accidental unpredictable inclusions. After analyzing the modern street lighting market, the design of a street lamp was created and proposed.Scientific novelty. It is proposed to use an intelligent control system in the lighting of pedestrian crossings, because now it is widely used only as part of the complex "smart home". Application in the scheme of lighting of pedestrian crossings of dimming and special narrowly directed motion sensors with a viewing angle of 6° horizontally that will allow to exclude accidental operation, both from people and cars, and from dogs and cats. A new design of the road lamp has been developed, based on the analyzed provisions on the correct lighting of pedestrian crossings.Practical significance. Lighting of pedestrian crossings is currently a problem in our country, because there are many accidents, and for good lighting you need to spend a lot of money on electricity from local budgets. This intelligent pedestrian crossing lighting control system is specially designed so that the use of electricity can be reduced by 70% and the service life of lamps can be significantly increased, for example by 1.5 times, but a more accurate value can be obtained only after the introduction of the first experimental sample. The use of such a system is possible throughout Ukraine at each crossing, unlike many other projects for lighting road crossings.


2022 ◽  
Vol 119 (1) ◽  
pp. 387-405
Author(s):  
Lei Zhang ◽  
Yinlong Yuan ◽  
Yihe Sun ◽  
Yun Cheng ◽  
Dian Wu ◽  
...  

Author(s):  
В.В. Побединский ◽  
И.Н. Кручинин ◽  
С.В. Ляхов ◽  
Е.В. Побединский

Рассмотрена проблема совершенствования роторных окорочных станков, которые во всех технологиях лесопереработки лесопромышленных стран используются в обязательном порядке. Несмотря на достаточно отработанную конструкцию, тем не менее, основные технологические операции станка не оснащены современными адаптивными системами автоматического управления (САУ). Ранее были предложены разработки на основе пневмогидропривода с использованием автоматического управления на основе нечеткой логики. В предложенной системе автоматического управления выполняется стабилизация заданного усилия прижима режущего инструмента – короснимателя. Однако заданное усилие зависит от ряда технологических параметров, которые характеризуются неопределенностью, и проблема управления заданным прижимом инструмента осталась нерешенной. Таким образом определилась цель исследований, которая заключалась в создании интеллектуальной системы автоматического управления заданным прижимом короснимателя окорочного станка. Решались следующие задачи: 1) разработка схемы интеллектуального управления короснимателем; 2) разработка схемы обобщенной интеллектуальной системы управления в виде нейронечеткой сети; 3) постановка задачи управления заданным прижимом инструмента; 4) обоснование входных и выходных переменных задачи (фаззификация); 5) разработка базы правил нечеткой системы; 6) выполнение нечетких выводов для промежуточных и заключительного слоев сети в среде Matlab; 7) реализация модели интеллектуальной системы в среде Matlab+Simulink. Результатами работы является модель интеллектуальной системы управления короснимателем и ее программная реализация в среде Simulink для использования в практике проектирования роторных окорочных станков. The problem of improving the rotary debarkers, which are used without fail in all timber processing technologies of the timber industry countries, is considered. Despite the sufficiently developed design, nevertheless, the main technological operations of the machine are not equipped with modern adaptive automatic control systems (ACS). Previously, developments based on a pneumatic hydraulic drive were proposed using automatic control based on fuzzy logic. In the proposed automatic control system, the stabilization of a given pressing force of the cutting tool – the debarker is performed. However, the given force depends on a number of technological parameters, which are characterized by uncertainty, and the problem of controlling the given clamping of the tool remains unsolved. Thus, the goal of the research was determined, which was to create an intelligent system for automatic control of a given pressure of the debarker staple lifter. The following tasks were solved: 1) development of an intelligent control scheme for the debarker; 2) development of a diagram of a generalized intelligent control system in the form of a neuro-fuzzy network; 3) setting the task of controlling the given clamping of the tool; 4) justification of the input and output variables of the problem (fuzzification); 5) development of a fuzzy system rule base; 6) execution of fuzzy conclusions for intermediate and final layers of the network in the Matlab environment; 7) implementation of the model of an intelligent system in the Matlab + Simulink environment. The results of the work are a model of an intelligent control system for the debarker and its software implementation in the Simulink environment for use in the practice of designing rotary debarkers.


2021 ◽  
Author(s):  
Yinghao Wu ◽  
Jincun Liu ◽  
Yaoguang Wei ◽  
Dong An ◽  
Yunhong Duan ◽  
...  

2021 ◽  
pp. 111-129
Author(s):  
Ritesh Tirole ◽  
R R Joshi ◽  
Vinod Kumar Yadav ◽  
Jai Kumar Maherchandani ◽  
Shripati Vyas

Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 44
Author(s):  
Miguel A. Muñoz-García ◽  
Luis Hernández-Callejo

The editorial introduces a Special Issue entitled “Photovoltaics and Electrification in Agriculture”. Agriculture requires not only tillage and fertilization but also water supply and, in some cases, heating and cooling. These needs go hand in hand with the use of energy, which, increasingly, is electrical energy. An option that has dropped a lot in price in recent years is photovoltaic energy. This type of energy has experienced an explosion in terms of its expansion worldwide and has been revealed as a viable solution to rapidly increase the electrical power of non-fossil origin. However, the use of panels must compete with the use of the soil for cultivation, and in many cases, it could displace the use of the soil for cultivation, something that would not be desirable either from a production point of view or from an ecological point of view. For this, a new concept of soil sharing for crops and energy production is being developed in what is called “agrovoltaics”. This shared production model is analyzed in this document. In addition, the electrification of agriculture allows the introduction of elements, such as sensors, the IoT, and intelligent control. The internet connection opens the doors to technologies such as those based on data, digital control, and what is called precision agriculture, both for cultivation in greenhouses and for regular cultivation. This would not be possible without an electrical energy source that allows powering the inter-connected elements, photovoltaics being the best candidate again. However, above all, we must not forget the issue of CO2 emissions due to the use of energy in agriculture. In this sense, photovoltaic energy can reduce the carbon footprint and provide one of the cheapest energy sources available. All these topics are analyzed in this Special Issue, focusing on photovoltaics and its uses and impact on agriculture.


Sign in / Sign up

Export Citation Format

Share Document