scholarly journals Wide-area damping state feedback and output feedback controller design strategy considering time delays and actuator saturation based on parametric Lyapunov theory

AIP Advances ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 035331 ◽  
Author(s):  
Tao Lin ◽  
Guili Ding ◽  
Rusi Chen ◽  
Baoping Chen ◽  
Xialing Xu
2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Liaoliang Xiao ◽  
Mingyang Yu

The problem of finite-time stabilization for switched discrete-time systems under both fast and slow switching is addressed. In the fast switching case, the designed static state feedback controller combines controllers for each subsystem and resetting controller at switching instant, it is shown that the resetting controller can reduce the conservativeness on controller design. Then the results are extended to output feedback controller design. Under slow switching, both static state feedback and output feedback controller are designed with admissible average dwell time, respectively. Several numerical examples are given to illustrate the proposed results within this paper.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Li Qiu ◽  
Qin Luo ◽  
Shanbin Li ◽  
Bugong Xu

This paper is concerned with the problem of modeling and output feedback controller design for a class of discrete-time networked control systems (NCSs) with time delays and packet dropouts. A Markovian jumping method is proposed to deal with random time delays and packet dropouts. Different from the previous studies on the issue, the characteristics of networked communication delays and packet dropouts can be truly reflected by the unified model; namely, both sensor-to-controller (S-C) and controller-to-actuator (C-A) time delays, and packet dropouts are modeled and their history behavior is described by multiple Markov chains. The resulting closed-loop system is described by a new Markovian jump linear system (MJLS) with Markov delays model. Based on Lyapunov stability theory and linear matrix inequality (LMI) method, sufficient conditions of the stochastic stability and output feedback controller design method for NCSs with random time delays and packet dropouts are presented. A numerical example is given to illustrate the effectiveness of the proposed method.


Author(s):  
Kho Hie Kwee ◽  
Hardiansyah .

This paper addresses the design problem of robust H2 output feedback controller design for damping power system oscillations. Sufficient conditions for the existence of output feedback controllers with norm-bounded parameter uncertainties are given in terms of linear matrix inequalities (LMIs). Furthermore, a convex optimization problem with LMI constraints is formulated to design the output feedback controller which minimizes an upper bound on the worst-case H2 norm for a range of admissible plant perturbations. The technique is illustrated with applications to the design of stabilizer for a single-machine infinite-bus (SMIB) power system. The LMI based control ensures adequate damping for widely varying system operating.


Sign in / Sign up

Export Citation Format

Share Document