Particles dispersion and deposition in inhomogeneous turbulent flows using continuous random walk models

2019 ◽  
Vol 31 (8) ◽  
pp. 083301 ◽  
Author(s):  
Amir A. Mofakham ◽  
Goodarz Ahmadi
1978 ◽  
Vol 15 (1) ◽  
pp. 65-77 ◽  
Author(s):  
Anthony G. Pakes

This paper develops the notion of the limiting age of an absorbing Markov chain, conditional on the present state. Chains with a single absorbing state {0} are considered and with such a chain can be associated a return chain, obtained by restarting the original chain at a fixed state after each absorption. The limiting age, A(j), is the weak limit of the time given Xn = j (n → ∞).A criterion for the existence of this limit is given and this is shown to be fulfilled in the case of the return chains constructed from the Galton–Watson process and the left-continuous random walk. Limit theorems for A (J) (J → ∞) are given for these examples.


1978 ◽  
Vol 15 (01) ◽  
pp. 65-77 ◽  
Author(s):  
Anthony G. Pakes

This paper develops the notion of the limiting age of an absorbing Markov chain, conditional on the present state. Chains with a single absorbing state {0} are considered and with such a chain can be associated a return chain,obtained by restarting the original chain at a fixed state after each absorption. The limiting age,A(j), is the weak limit of the timegivenXn=j(n → ∞).A criterion for the existence of this limit is given and this is shown to be fulfilled in the case of the return chains constructed from the Galton–Watson process and the left-continuous random walk. Limit theorems forA(J) (J →∞) are given for these examples.


1973 ◽  
Vol 10 (1) ◽  
pp. 39-53 ◽  
Author(s):  
A. G. Pakes

The present work considers a left-continuous random walk moving on the positive integers and having an absorbing state at the origin. Limit theorems are derived for the position of the walk at time n given: (a) absorption does not occur until after n, or (b) absorption does not occur until after m + n where m is very large, or (c) absorption occurs at m + n. A limit theorem is given for an R-positive recurrent Markov chain on the non-negative integers with an absorbing origin and subject to condition (c) above.


1976 ◽  
Vol 13 (3) ◽  
pp. 444-454 ◽  
Author(s):  
P. J. Green

For a left-continuous random walk, absorbing at 0, the joint distribution of the maximum and time to absorption is derived. A description of the tails of the distributions and a conditional limit theorem are obtained for the cases where absorption is certain.


1973 ◽  
Vol 10 (01) ◽  
pp. 39-53 ◽  
Author(s):  
A. G. Pakes

The present work considers a left-continuous random walk moving on the positive integers and having an absorbing state at the origin. Limit theorems are derived for the position of the walk at time n given: (a) absorption does not occur until after n, or (b) absorption does not occur until after m + n where m is very large, or (c) absorption occurs at m + n. A limit theorem is given for an R-positive recurrent Markov chain on the non-negative integers with an absorbing origin and subject to condition (c) above.


1978 ◽  
Vol 15 (2) ◽  
pp. 292-299 ◽  
Author(s):  
Anthony G. Pakes

In a recent paper Green (1976) obtained some conditional limit theorems for the absorption time of left-continuous random walk. His methods require that in the driftless case the increment distribution has exponentially decreasing tails and that the same is true for a transformed distribution in the case of negative drift.Here we take a different approach which will produce Green's results under minimal conditions. Limit theorems are given for the maximum as the initial position of the random walk tends to infinity.


2007 ◽  
Vol 4 (4) ◽  
pp. 623-652 ◽  
Author(s):  
D. Spivakovskaya ◽  
A. W. Heemink ◽  
E. Deleersnijder

Abstract. Random walk models are a powerful tool for the investigation of transport processes in turbulent flows. However, standard random walk methods are applicable only when the flow velocities and diffusivity are sufficiently smooth functions. In practice there are some regions where the rapid but continuous change in diffusivity may be represented by a discontinuity. The random walk model based on backward Îto calculus can be used for these problems. This model was proposed by LaBolle et al. (2000). The latter is best suited to the problems under consideration. It is then applied for two test cases with discontinuous diffusivity, highlighting the advantages of this method.


Sign in / Sign up

Export Citation Format

Share Document