scholarly journals Wisconsin In Situ Penning (WISP) gauge: A versatile neutral pressure gauge to measure partial pressures in strong magnetic fields

2020 ◽  
Vol 91 (4) ◽  
pp. 043504
Author(s):  
T. Kremeyer ◽  
K. Flesch ◽  
O. Schmitz ◽  
G. Schlisio ◽  
U. Wenzel ◽  
...  
2018 ◽  
Vol 89 (3) ◽  
pp. 033503 ◽  
Author(s):  
U. Wenzel ◽  
T. S. Pedersen ◽  
M. Marquardt ◽  
M. Singer

2010 ◽  
Vol 65 (3-4) ◽  
pp. 307-308
Author(s):  
Friedwardt Winterberg

This communication is a theoretical consideration explaining the benefits to reduce tumour growth in situ by interaction of ultrasound and strong magnetic fields. No documentation is presented.


1960 ◽  
Vol 70 (4) ◽  
pp. 693-714 ◽  
Author(s):  
G.M. Strakhovskii ◽  
N.V. Kravtsov

2002 ◽  
Vol 172 (11) ◽  
pp. 1303 ◽  
Author(s):  
Anatolii K. Zvezdin ◽  
Viktor V. Kostyuchenko ◽  
V.V. Platonov ◽  
V.I. Plis ◽  
A.I. Popov ◽  
...  

2019 ◽  
Author(s):  
Valentina Guccini ◽  
Sugam Kumar ◽  
Yulia Trushkina ◽  
Gergely Nagy ◽  
Christina Schütz ◽  
...  

The magnetic alignment of cellulose nanocrystals (CNC) and lepidocrocite nanorods (LpN), pristine and in hybrid suspensions has been investigated using contrast-matched small-angle neutron scattering (SANS) under in situ magnetic fields (0 – 6.8 T) and polarized optical microscopy. The pristine CNC (diamagnetic) and pristine LpN (paramagnetic) align perpendicular and parallel to the direction of field, respectively. The alignment of both the nanoparticles in their hybrid suspensions depends on the relative amount of the two components (CNC and LpN) and strength of the applied magnetic field. In the presence of 10 wt% LpN and fields < 1.0 T, the CNC align parallel to the field. In the hybrid containing lower amount of LpN (1 wt%), the ordering of CNC is partially frustrated in all range of magnetic field. At the same time, the LpN shows both perpendicular and parallel orientation, in the presence of CNC. This study highlights that the natural perpendicular ordering of CNC can be switched to parallel by weak magnetic fields and the incorporation of paramagnetic nanoparticle as LpN, as well it gives a method to influence the orientation of LpN.<br>


2021 ◽  
Author(s):  
Pujitha Perla ◽  
H. Aruni Fonseka ◽  
Patrick Zellekens ◽  
Russell Deacon ◽  
Yisong Han ◽  
...  

Nb/InAs-nanowire Josephson junctions are fabricated in situ by a special shadow evaporation scheme for the superconducting Nb electrode. The junctions are interesting candidates for superconducting quantum circuits requiring large magnetic fields.


Both the penetrating power of the cosmic rays through material ab­sorbers and their ability to reach the earth in spite of its magnetic field, make it certain that the energy of many of the primary particles must reach at least 10 11 e-volts. However, the energy measurements by Kunze, and by Anderson, using cloud chambers in strong magnetic fields, have extended only to about 5 x 10 9 e-volts. Particles of greater energy were reported, but the curvature of their tracks was too small to be measured with certainty. We have extended these energy measurements to somewhat higher energies, using a large electro-magnet specially built for the purpose and described in Part I. As used in these experiments, the magnet allowed the photography of tracks 17 cm long in a field of about 14,000 gauss. The magnet weighed about 11,000 kilos and used a power of 25 kilowatts.


Sign in / Sign up

Export Citation Format

Share Document