Pseudoscalar interaction of coupled quantum‐mechanical oscillators with independent Fermi systems

1982 ◽  
Vol 23 (5) ◽  
pp. 760-779 ◽  
Author(s):  
Guy A. Battle III
2015 ◽  
Vol 22 (04) ◽  
pp. 1550021 ◽  
Author(s):  
Fabio Benatti ◽  
Laure Gouba

When dealing with the classical limit of two quantum mechanical oscillators on a noncommutative configuration space, the limits corresponding to the removal of configuration-space noncommutativity and position-momentum noncommutativity do not commute. We address this behaviour from the point of view of the phase-space localisation properties of the Wigner functions of coherent states under the two limits.


2012 ◽  
Vol 45 (19) ◽  
pp. 236-241
Author(s):  
Xiaoting Wang ◽  
Sai Vinjanampathy ◽  
Frederick W. Strauch ◽  
Kurt Jacobs

Author(s):  
M. S. Bartlett ◽  
J. E. Moyal

The ‘phase-space’ method in quantum theory is used to derive exact expressions for the transition probabilities of a perturbed oscillator. Comparison with the approximate results obtained by perturbation methods shows that the latter must be multiplied by an exponential factor exp (− ∊/ℏω), where ∊ is the non-fluctuating part of the work done by the perturbing forces; as long as ∊ is small, exp (− ∊/ℏω) ˜ 1 and only dipole transitions have an appreciable probability. As the perturbation energy increases, however, this is no longer true, and multipole transitions become progressively more probable, the most probable ones being those for which the change in energy is approximately equal to the work done by the perturbing forces.


2020 ◽  
Vol 74 (11) ◽  
Author(s):  
Michele Bonaldi ◽  
Antonio Borrielli ◽  
Avishek Chowdhury ◽  
Gianni Di Giuseppe ◽  
Wenlin Li ◽  
...  

2004 ◽  
Vol 13 (04) ◽  
pp. 625-639 ◽  
Author(s):  
RENATA SISTO ◽  
ARTURO MOLETI

Different theoretical estimates of the sensitivity of gravitational wave resonant bar detectors, which have been published in the last decades, are reviewed and discussed. The "classical" cross-section estimate is obtained considering the bar as a classical or quantum oscillator, whose initial thermal state is that of a single oscillator driven by a single external stochastic force. Other theoretical studies computed a much larger cross-section, using a variety of quantum-mechanical arguments. The review of the existing literature shows that there is no well established model for the response of a resonant detector to gravitational waves. The resonant, yet random, nature of the Brownian thermal motion may justify considering the bar response at the fundamental longitudinal eigenfrequency as that of a large number of effective quantum mechanical oscillators. Assuming this hypothesis, quantum coherence effects, as first suggested by Weber, lead to a much larger cross-section than that "classically" predicted. The reduction of this amplification due to thermal noise itself is also computed.


Sign in / Sign up

Export Citation Format

Share Document