A new class of exact solutions in general relativity representing perfect fluid balls

1993 ◽  
Vol 34 (6) ◽  
pp. 2440-2447 ◽  
Author(s):  
D. N. Pant ◽  
Neeraj Pant
1976 ◽  
Vol 29 (2) ◽  
pp. 113 ◽  
Author(s):  
N Chakravarty ◽  
SB Dutta Choudhury ◽  
A Banerjee

A general method is described by which exact solutions of Einstein's field equations are obtained for a nonstatic spherically symmetric distribution of a perfect fluid. In addition to the previously known solutions which are systematically derived, a new set of exact solutions is found, and the dynamical behaviour of the corresponding models is briefly discussed.


2021 ◽  
Author(s):  
◽  
Petarpa Boonserm

<p><b>In this thesis four separate problems in general relativity are considered, dividedinto two separate themes: coordinate conditions and perfect fluid spheres. Regardingcoordinate conditions we present a pedagogical discussion of how the appropriateuse of coordinate conditions can lead to simplifications in the form of the spacetimecurvature — such tricks are often helpful when seeking specific exact solutions of theEinstein equations. Regarding perfect fluid spheres we present several methods oftransforming any given perfect fluid sphere into a possibly new perfect fluid sphere.</b></p> <p>This is done in three qualitatively distinct manners: The first set of solution generatingtheorems apply in Schwarzschild curvature coordinates, and are phrased in termsof the metric components: they show how to transform one static spherical perfectfluid spacetime geometry into another. A second set of solution generating theoremsextends these ideas to other coordinate systems (such as isotropic, Gaussian polar,Buchdahl, Synge, and exponential coordinates), again working directly in terms of themetric components. Finally, the solution generating theorems are rephrased in termsof the TOV equation and density and pressure profiles. Most of the relevant calculationsare carried out analytically, though some numerical explorations are also carriedout.</p>


2010 ◽  
Vol 330 (2) ◽  
pp. 353-359 ◽  
Author(s):  
Neeraj Pant ◽  
R. N. Mehta ◽  
Mamta Joshi Pant

2021 ◽  
Author(s):  
◽  
Petarpa Boonserm

<p><b>In this thesis four separate problems in general relativity are considered, dividedinto two separate themes: coordinate conditions and perfect fluid spheres. Regardingcoordinate conditions we present a pedagogical discussion of how the appropriateuse of coordinate conditions can lead to simplifications in the form of the spacetimecurvature — such tricks are often helpful when seeking specific exact solutions of theEinstein equations. Regarding perfect fluid spheres we present several methods oftransforming any given perfect fluid sphere into a possibly new perfect fluid sphere.</b></p> <p>This is done in three qualitatively distinct manners: The first set of solution generatingtheorems apply in Schwarzschild curvature coordinates, and are phrased in termsof the metric components: they show how to transform one static spherical perfectfluid spacetime geometry into another. A second set of solution generating theoremsextends these ideas to other coordinate systems (such as isotropic, Gaussian polar,Buchdahl, Synge, and exponential coordinates), again working directly in terms of themetric components. Finally, the solution generating theorems are rephrased in termsof the TOV equation and density and pressure profiles. Most of the relevant calculationsare carried out analytically, though some numerical explorations are also carriedout.</p>


2015 ◽  
Vol 24 (07) ◽  
pp. 1550053 ◽  
Author(s):  
Amare Abebe

One of the exact solutions of f(R) theories of gravity in the presence of different forms of matter exactly mimics the ΛCDM solution of general relativity (GR) at the background level. In this work we study the evolution of scalar cosmological perturbations in the covariant and gauge-invariant formalism and show that although the background in such a model is indistinguishable from the standard ΛCDM cosmology, this degeneracy is broken at the level of first-order perturbations. This is done by predicting different rates of structure formation in ΛCDM and the f(R) model both in the complete and quasi-static regimes.


Sign in / Sign up

Export Citation Format

Share Document