On the behavior of velocity gradient tensor invariants in direct numerical simulations of turbulence

1993 ◽  
Vol 5 (8) ◽  
pp. 2008-2013 ◽  
Author(s):  
Brian J. Cantwell
2019 ◽  
Vol 872 ◽  
pp. 492-514 ◽  
Author(s):  
Nishant Parashar ◽  
Sawan Suman Sinha ◽  
Balaji Srinivasan

We perform Lagrangian investigations of the dynamics of velocity gradients in compressible decaying turbulence. Specifically, we examine the evolution of the invariants of the velocity-gradient tensor. We employ well-resolved direct numerical simulations over a range of Mach number along with a Lagrangian particle tracker to examine trajectories of fluid particles in the space of the invariants of the velocity gradient tensor. This allows us to accurately measure the lifetimes of major topologies of compressible turbulence and provide an explanation of why some selective topologies tend to exist longer than the others. Further, the influence of dilatation on the lifetime of various topologies is examined. Finally, we explain why the so-called conditional mean trajectories (CMT) used previously by several researchers fail to predict the lifetime of topologies accurately.


1998 ◽  
Vol 10 (9) ◽  
pp. 2336-2346 ◽  
Author(s):  
Jesús Martı́n ◽  
Andrew Ooi ◽  
M. S. Chong ◽  
Julio Soria

2018 ◽  
Vol 30 (1) ◽  
pp. 015104 ◽  
Author(s):  
Komal Kumari ◽  
Susila Mahapatra ◽  
Somnath Ghosh ◽  
Joseph Mathew

2020 ◽  
Vol 177 (5) ◽  
pp. 1074-1091
Author(s):  
Estibalitz Ukar ◽  
Vinyet Baqués ◽  
Stephen E. Laubach ◽  
Randall Marrett

At >7 km depths in the Tarim Basin, hydrocarbon reservoirs in Ordovician rocks of the Yijianfang Formation contain large cavities (c. 10 m or more), vugs, fractures and porous fault rocks. Although some Yijianfang Formation outcrops contain shallow (formed near surface) palaeokarst features, cores from the Halahatang oilfield lack penetrative palaeokarst evidence. Outcrop palaeokarst cavities and opening-mode fractures are mostly mineral filled but some show evidence of secondary dissolution and fault rocks are locally highly (c. 30%) porous. Cores contain textural evidence of repeated formation of dissolution cavities and subsequent filling by cement. Calcite isotopic analyses indicate depths between c. 220 and 2000 m. Correlation of core and image logs shows abundant cement-filled vugs associated with decametre-scale fractured zones with open cavities that host hydrocarbons. A Sm–Nd isochron age of 400 ± 37 Ma for fracture-filling fluorite indicates that cavities in core formed and were partially cemented prior to the Carboniferous, predating Permian oil emplacement. Repeated creation and filling of vugs, timing constraints and the association of vugs with large cavities suggest dissolution related to fractures and faults. In the current high-strain-rate regime, corroborated by velocity gradient tensor analysis of global positioning system (GPS) data, rapid horizontal extension could promote connection of porous and/or solution-enlarged fault rock, fractures and cavities.Supplementary material: Stable isotopic analyses and the velocity gradient tensor and principal direction and magnitude calculation are available at https://doi.org/10.6084/m9.figshare.c.4946046Thematic collection: This article is part of the The Geology of Fractured Reservoirs collection available at: https://www.lyellcollection.org/cc/the-geology-of-fractured-reservoirs


Sign in / Sign up

Export Citation Format

Share Document