Lagrangian investigations of velocity gradients in compressible turbulence: lifetime of flow-field topologies

2019 ◽  
Vol 872 ◽  
pp. 492-514 ◽  
Author(s):  
Nishant Parashar ◽  
Sawan Suman Sinha ◽  
Balaji Srinivasan

We perform Lagrangian investigations of the dynamics of velocity gradients in compressible decaying turbulence. Specifically, we examine the evolution of the invariants of the velocity-gradient tensor. We employ well-resolved direct numerical simulations over a range of Mach number along with a Lagrangian particle tracker to examine trajectories of fluid particles in the space of the invariants of the velocity gradient tensor. This allows us to accurately measure the lifetimes of major topologies of compressible turbulence and provide an explanation of why some selective topologies tend to exist longer than the others. Further, the influence of dilatation on the lifetime of various topologies is examined. Finally, we explain why the so-called conditional mean trajectories (CMT) used previously by several researchers fail to predict the lifetime of topologies accurately.

2017 ◽  
Vol 815 ◽  
pp. 295-332 ◽  
Author(s):  
I. Paul ◽  
G. Papadakis ◽  
J. C. Vassilicos

This paper investigates the dynamics of velocity gradients for a spatially developing flow generated by a single square element of a fractal square grid at low inlet Reynolds number through direct numerical simulation. This square grid-element is also the fundamental block of a classical grid. The flow along the grid-element centreline is initially irrotational and becomes turbulent further downstream due to the lateral excursions of vortical turbulent wakes from the grid-element bars. We study the generation and evolution of the symmetric and anti-symmetric parts of the velocity gradient tensor for this spatially developing flow using the transport equations of mean strain product and mean enstrophy respectively. The choice of low inlet Reynolds number allows for fine spatial resolution and long simulations, both of which are conducive in balancing the budget equations of the above quantities. The budget analysis is carried out along the grid-element centreline and the bar centreline. The former is observed to consist of two subregions: one in the immediate lee of the grid-element which is dominated by irrotational strain, and one further downstream where both strain and vorticity coexist. In the demarcation area between these two subregions, where the turbulence is inhomogeneous and developing, the energy spectrum exhibits the best$-5/3$power-law slope. This is the same location where the experiments at much higher inlet Reynolds number show a well-defined$-5/3$spectrum over more than a decade of frequencies. Yet, the$Q{-}R$diagram, where$Q$and$R$are the second and third invariants of the velocity gradient tensor, remains undeveloped in the near-grid-element region, and both the intermediate and extensive strain-rate eigenvectors align with the vorticity vector. Along the grid-element centreline, the strain is the first velocity gradient quantity generated by the action of pressure Hessian. This strain is then transported downstream by fluctuations and strain self-amplification is activated a little later. Further downstream, vorticity from the bar wakes is brought towards the grid-element centreline, and, through the interaction with strain, leads to the production of enstrophy. The strain-rate tensor has a statistically axial stretching form in the production region, but a statistically biaxial stretching form in the decay region. The usual signatures of velocity gradients such as the shape of$Q{-}R$diagrams and the alignment of vorticity vector with the intermediate eigenvector are detected only in the decay region even though the local Reynolds number (based on the Taylor length scale) is only between 30 and 40.


1999 ◽  
Vol 381 ◽  
pp. 141-174 ◽  
Author(s):  
ANDREW OOI ◽  
JESUS MARTIN ◽  
JULIO SORIA ◽  
M. S. CHONG

Since the availability of data from direct numerical simulation (DNS) of turbulence, researchers have utilized the joint PDFs of invariants of the velocity gradient tensor to study the geometry of small-scale motions of turbulence. However, the joint PDFs only give an instantaneous static representation of the properties of fluid particles and dynamical Lagrangian information cannot be extracted. In this paper, the Lagrangian evolution of the invariants of the velocity gradient tensor is studied using conditional mean trajectories (CMT). These CMT are derived using the concept of the conditional mean time rate of change of invariants calculated from a numerical simulation of isotropic turbulence. The study of the CMT in the invariant space (RA, QA) of the velocity-gradient tensor, invariant space (RS, QS) of the rate-of-strain tensor, and invariant space (RW, QW) of the rate-of-rotation tensor show that the mean evolution in the (Σ, QW) phase plane, where Σ is the vortex stretching, is cyclic with a characteristic period similar to that found by Martin et al. (1998) in the cyclic mean evolution of the CMT in the (RA, QA) phase plane. Conditional mean trajectories in the (Σ, QW) phase plane suggest that the initial reduction of QW in regions of high QW is due to viscous diffusion and that vorticity contraction only plays a secondary role subsequent to this initial decay. It is also found that in regions of the flow with small values of QW, the local values of QW do not begin to increase, even in the presence of self-stretching, until a certain self-stretching rate threshold is reached, i.e. when Σ≈0.25 〈QW〉1/2. This study also shows that in regions where the kinematic vorticity number (as defined by Truesdell 1954) is low, the local value of dissipation tends to increase in the mean as observed from a Lagrangian frame of reference. However, in regions where the kinematic vorticity number is high, the local value of enstrophy tends to decrease. From the CMT in the (−QS, RS phase plane, it is also deduced that for large values of dissipation, there is a tendency for fluid particles to evolve towards having a positive local value of the intermediate principal rate of strain.


2018 ◽  
Vol 30 (1) ◽  
pp. 015104 ◽  
Author(s):  
Komal Kumari ◽  
Susila Mahapatra ◽  
Somnath Ghosh ◽  
Joseph Mathew

2020 ◽  
Vol 177 (5) ◽  
pp. 1074-1091
Author(s):  
Estibalitz Ukar ◽  
Vinyet Baqués ◽  
Stephen E. Laubach ◽  
Randall Marrett

At >7 km depths in the Tarim Basin, hydrocarbon reservoirs in Ordovician rocks of the Yijianfang Formation contain large cavities (c. 10 m or more), vugs, fractures and porous fault rocks. Although some Yijianfang Formation outcrops contain shallow (formed near surface) palaeokarst features, cores from the Halahatang oilfield lack penetrative palaeokarst evidence. Outcrop palaeokarst cavities and opening-mode fractures are mostly mineral filled but some show evidence of secondary dissolution and fault rocks are locally highly (c. 30%) porous. Cores contain textural evidence of repeated formation of dissolution cavities and subsequent filling by cement. Calcite isotopic analyses indicate depths between c. 220 and 2000 m. Correlation of core and image logs shows abundant cement-filled vugs associated with decametre-scale fractured zones with open cavities that host hydrocarbons. A Sm–Nd isochron age of 400 ± 37 Ma for fracture-filling fluorite indicates that cavities in core formed and were partially cemented prior to the Carboniferous, predating Permian oil emplacement. Repeated creation and filling of vugs, timing constraints and the association of vugs with large cavities suggest dissolution related to fractures and faults. In the current high-strain-rate regime, corroborated by velocity gradient tensor analysis of global positioning system (GPS) data, rapid horizontal extension could promote connection of porous and/or solution-enlarged fault rock, fractures and cavities.Supplementary material: Stable isotopic analyses and the velocity gradient tensor and principal direction and magnitude calculation are available at https://doi.org/10.6084/m9.figshare.c.4946046Thematic collection: This article is part of the The Geology of Fractured Reservoirs collection available at: https://www.lyellcollection.org/cc/the-geology-of-fractured-reservoirs


Sign in / Sign up

Export Citation Format

Share Document