Inviscid and inviscid-limit behavior of a surface quasigeostrophic flow

1997 ◽  
Vol 9 (4) ◽  
pp. 876-882 ◽  
Author(s):  
Koji Ohkitani ◽  
Michio Yamada
2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Junlei Zhu

The inviscid limit problem for the smooth solutions of the Boussinesq system is studied in this paper. We prove theHsconvergence result of this system as the diffusion and the viscosity coefficients vanish with the initial data belonging toHs. Moreover, theHsconvergence rate is given if we allow more regularity on the initial data.


Author(s):  
Lijun Wang ◽  
Jingna Li ◽  
Li Xia

AbstractIn this paper, the inviscid limit behavior of solution of the fractional complex Ginzburg–Landau (FCGL) equation$${\partial _t}u + (a + i\nu){\Lambda ^{2\alpha}}u + (b + i\mu){\left| u \right|^{2\sigma}}u = 0, \quad (x, t) \in {{\Cal T}^n} \times (0, \infty)$$is considered. It is shown that the solution of the FCGL equation converges to the solution of nonlinear fractional complex Schrödinger equation, while the initial data${u_0}$is taken in${L^2}, $${H^\alpha}$, and${L^{2\sigma + 2}}$as$a,\, b$tends to zero, and the convergence rate is also obtained.


1994 ◽  
Vol 1 (3) ◽  
pp. 315-323
Author(s):  
František Neuman

Abstract A classification of classes of equivalent linear differential equations with respect to ω-limit sets of their canonical representatives is introduced. Some consequences of this classification to the oscillatory behavior of solution spaces are presented.


1995 ◽  
Vol 32 (2) ◽  
pp. 375-395 ◽  
Author(s):  
Lajos Takács

This paper is concerned with the distibutions and the moments of the area and the local time of a random walk, called the Bernoulli meander. The limit behavior of the distributions and the moments is determined in the case where the number of steps in the random walk tends to infinity. The results of this paper yield explicit formulas for the distributions and the moments of the area and the local time for the Brownian meander.


1994 ◽  
Vol 258 ◽  
pp. 131-165 ◽  
Author(s):  
Peter W. Duck ◽  
Gordon Erlebacher ◽  
M. Yousuff Hussaini

The linear stability of compressible plane Couette flow is investigated. The appropriate basic velocity and temperature distributions are perturbed by a small-amplitude normal-mode disturbance. The full small-amplitude disturbance equations are solved numerically at finite Reynolds numbers, and the inviscid limit of these equations is then investigated in some detail. It is found that instabilities can occur, although the corresponding growth rates are often quite small; the stability characteristics of the flow are quite different from unbounded flows. The effects of viscosity are also calculated, asymptotically, and shown to have a stabilizing role in all the cases investigated. Exceptional regimes to the problem occur when the wave speed of the disturbances approaches the velocity of either of the walls, and these regimes are also analysed in some detail. Finally, the effect of imposing radiation-type boundary conditions on the upper (moving) wall (in place of impermeability) is investigated, and shown to yield results common to both bounded and unbounded flows.


Sign in / Sign up

Export Citation Format

Share Document