scholarly journals New upper bounds on the quantum capacity for general attenuator and amplifier

2020 ◽  
Author(s):  
Kabgyun Jeong ◽  
Youngrong Lim ◽  
Jaewam Kim ◽  
Soojoon Lee
2014 ◽  
Vol 14 (11&12) ◽  
pp. 917-936
Author(s):  
Yingkai Ouyang

Evaluating the quantum capacity of quantum channels is an important but difficult problem, even for channels of low input and output dimension. Smith and Smolin showed that the quantum capacity of the Clifford-twirl of a qubit amplitude damping channel (a qubit depolarizing channel) has a quantum capacity that is at most the coherent information of the qubit amplitude damping channel evaluated on the maximally mixed input state. We restrict our attention to obtaining upper bounds on the quantum capacity using a generalization of Smith and Smolin's degradable extension technique. Given a degradable channel $\cN$ and a finite projective group of unitaries $\cV$, we show that the $\cV$-twirl of $\cN$ has a quantum capacity at most the coherent information of $\cN$ maximized over a $\cV$-contracted space of input states. As a consequence, degradable channels that are covariant with respect to diagonal Pauli matrices have quantum capacities that are their coherent information maximized over just the diagonal input states. As an application of our main result, we supply new upper bounds on the quantum capacity of some unital and non-unital channels -- $d$-dimensional depolarizing channels, two-qubit locally symmetric Pauli channels, and shifted qubit depolarizing channels.


2019 ◽  
Vol 99 (5) ◽  
Author(s):  
Youngrong Lim ◽  
Soojoon Lee ◽  
Jaewan Kim ◽  
Kabgyun Jeong

1997 ◽  
Vol 84 (1) ◽  
pp. 176-178
Author(s):  
Frank O'Brien

The author's population density index ( PDI) model is extended to three-dimensional distributions. A derived formula is presented that allows for the calculation of the lower and upper bounds of density in three-dimensional space for any finite lattice.


Author(s):  
S. Yahya Mohamed ◽  
A. Mohamed Ali

In this paper, the notion of energy extended to spherical fuzzy graph. The adjacency matrix of a spherical fuzzy graph is defined and we compute the energy of a spherical fuzzy graph as the sum of absolute values of eigenvalues of the adjacency matrix of the spherical fuzzy graph. Also, the lower and upper bounds for the energy of spherical fuzzy graphs are obtained.


Sign in / Sign up

Export Citation Format

Share Document