Time dependent solution of two stages M[X]/G/1 queue model server vacation random setup time and balking with Bernoulli schedule

2020 ◽  
Author(s):  
S. Shyamala ◽  
R. Vijayaraj
1971 ◽  
Vol 8 (04) ◽  
pp. 708-715 ◽  
Author(s):  
Emlyn H. Lloyd

The present theory of finite reservoirs is not rich in general theorems even when of the simple Moran type, with unit draft and stationary discrete independent-sequence inflows. For the corresponding systems with unbounded capacity however there are two classes of results which have been known for some time. One of these classes is concerned with the time-dependent solution, where the theory provides a functional equation for the generating function of the time to first emptiness (Kendall (1957)), and the other with the asymptotic stationary distribution of reservoir contents, for which an explicit formula for the generating function is available (Moran (1959)).


2009 ◽  
Author(s):  
Fabrizio Martelli ◽  
Samuele Del Bianco ◽  
Antonio Pifferi ◽  
Lorenzo Spinelli ◽  
Alessandro Torricelli ◽  
...  

1992 ◽  
Vol 29 (02) ◽  
pp. 418-429 ◽  
Author(s):  
Hideaki Takagi

Generalized M/G/1 vacation systems with exhaustive service include multiple and single vacation models and a setup time model possibly combined with an N-policy. In these models with given initial conditions, the time-dependent joint distribution of the server's state, the queue size, and the remaining vacation or service time is known (Takagi (1990)). In this paper, capitalizing on the above results, we obtain the Laplace transforms (with respect to time) for the distributions of the virtual waiting time, the unfinished work (backlog), and the depletion time. The steady-state limits of those transforms are also derived. An erroneous expression for the steady-state distribution of the depletion time in a multiple vacation model given by Keilson and Ramaswamy (1988) is corrected.


Sign in / Sign up

Export Citation Format

Share Document