Modulation of ion pitch angle in the presence of large-amplitude, electromagnetic ion cyclotron (EMIC) waves: 1D hybrid simulation

2020 ◽  
Vol 27 (12) ◽  
pp. 122902
Author(s):  
Shuo Ti ◽  
Tao Chen ◽  
Jiansheng Yao
2021 ◽  
Author(s):  
Shuo Ti ◽  
Tao Chen ◽  
Jiansheng Yao

<p>Large-amplitude electromagnetic ion cyclotron (EMIC) waves induce unique dynamics of charged particle movement in the magnetosphere. In a recent study, modulation of the ion pitch angle in the presence of large-amplitude EMIC waves is observed, and there lacks a good explanation for this phenomenon. We investigate this modulation primarily via a 1-D hybrid simulation model and find that the modulation is caused by the bulk velocity triggered by large-amplitude EMIC waves. Affected by the bulk velocity, the number density of ions will enhance around pitch angle . Beyond that, the ion pitch angle is also modulated by the EMIC waves, and the modulation period is half of the EMIC waves' period. In addition, parameters that affect ion pitch angle modulation, including the wave amplitude, ion energy, ion species, and wave normal angle, are studied in our work.</p>


2020 ◽  
Vol 125 (4) ◽  
Author(s):  
K. Sigsbee ◽  
C. A. Kletzing ◽  
J. B. Faden ◽  
A. N. Jaynes ◽  
G. D. Reeves ◽  
...  

Author(s):  
Sergei V. Smolin

Modeling of pitch angle scattering of ring current protons at interaction with electromagnetic ion cyclotron waves during a nonstorm period was considered very seldom. Therefore it is used correlated observation of enhanced electromagnetic ion cyclotron (EMIC) waves and dynamic evolution of ring current proton flux collected by Cluster satellite near the location L = 4.5 during March 26–27, 2003, a nonstorm period (Dst > –10 nT). Energetic (5–30 keV) proton fluxes are found to drop rapidly (e.g., a half hour) at lower pitch angles, corresponding to intensified EMIC wave activities. As mathematical model is used the non-stationary one-dimensional pitch angle diffusion equation which allows to compute numerically density of phase space or pitch angle distribution of the charged particles in the Earth’s magnetosphere. The model depends on time t, a local pitch angle and several parameters (the mass of a particle, the energy, the McIlwain parameter, the magnetic local time or geomagnetic eastern longitude, the geomagnetic activity index, parameter of the charged particle pitch angle distribution taken for the 90 degrees pitch angle at t = 0, the lifetime due to wave–particle interactions). This model allows numerically to estimate also for different geophysical conditions a lifetime due to wave–particle interactions. It is shown, that EMIC waves can yield decrements in proton flux within 30 minutes, consistent with the observational data. The good consent is received. Comparison of results on full model for the pitch angle range from 0 up to 180 degrees and on the model for the 90 degrees pitch angle is lead. For a perpendicular differential flux of the Earth’s ring current protons very good consent with the maximal relative error approximately 3.23 % is received


Space Weather ◽  
2014 ◽  
Vol 12 (6) ◽  
pp. 354-367 ◽  
Author(s):  
M. de Soria-Santacruz ◽  
M. Martinez-Sanchez ◽  
Y. Y. Shprits

2019 ◽  
Vol 46 (12) ◽  
pp. 6306-6314 ◽  
Author(s):  
J. Yu ◽  
L. Y. Li ◽  
J. Cui ◽  
J. B. Cao ◽  
J. Wang

Sign in / Sign up

Export Citation Format

Share Document