bulk velocity
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 15)

H-INDEX

17
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Davis W. Adams ◽  
Manoranjan Majji ◽  
Sarah Urdahl ◽  
Tejas Kulkarni ◽  
Anup Katake ◽  
...  

2021 ◽  
Vol 922 (2) ◽  
pp. L29
Author(s):  
Jianrui Li ◽  
Bjorn H. C. Emonts ◽  
Zheng Cai ◽  
J. Xavier Prochaska ◽  
Ilsang Yoon ◽  
...  

Abstract The link between the circumgalactic medium (CGM) and the stellar growth of massive galaxies at high-z depends on the properties of the widespread cold molecular gas. As part of the SUPERCOLD-CGM survey (Survey of Protocluster ELANe Revealing CO/[C i] in the Lyα-Detected CGM), we present the radio-loud QSO Q1228+3128 at z = 2.2218, which is embedded in an enormous Lyα nebula. ALMA+ACA observations of CO(4–3) reveal both a massive molecular outflow, and a more extended molecular gas reservoir across ∼100 kpc in the CGM, each containing a mass of M H2 ∼ 4–5 × 1010 M ⊙. The outflow and molecular CGM are aligned spatially, along the direction of an inner radio jet. After reanalysis of Lyα data of Q1228+3128 from the Keck Cosmic Web Imager, we found that the velocity of the extended CO agrees with the redshift derived from the Lyα nebula and the bulk velocity of the massive outflow. We propose a scenario where the radio source in Q1228+3128 is driving the molecular outflow and perhaps also enriching or cooling the CGM. In addition, we found that the extended CO emission is nearly perpendicular to the extended Lyα nebula spatially, indicating that the two gas phases are not well mixed, and possibly even represent different phenomena (e.g., outflow versus infall). Our results provide crucial evidence in support of predicted baryonic recycling processes that drive the early evolution of massive galaxies.


2021 ◽  
Author(s):  
Saleem Anwar Khan ◽  
Nadeem Hasan

Abstract 2-D numerical experiments are performed to investigate the flow instabilities and mixing of different non-isothermal counterflowing jets in a Passive-Mixer. The fluid is modelled as a binary mixture with thermal and solutal buoyancy effects considered through the Boussinesq approximation. The streams are arranged in a thermal and solutal buoyancy aiding configuration. Computations are carried out for three different ratios of the upper jet bulk velocity to the lower jet bulk velocity (VR), namely, VR = 0.5, 1.0 and 2. Within the parametric domain of RiT and RiC defined by region (RiT + RiC) = 3, the instability causing transition from steady to unsteady flow regime is observed for VR = 1 and 2 while no transition is found to occur at VR = 0.5. Using Landau theory, it is established that the transition from steady to unsteady flow regime is a supercritical Hopf bifurcation. A complete regime map identifying the steady and unsteady flow regimes, within the parametric space of the present study, is obtained by plotting the neutral curves of RiC and RiT (obtained using Landau theory) for different values of VR. POD analysis of the unsteady flows at VR = 1, establishes the presence of standing waves. However, for VR = 2, the presence of degenerate pairs in the POD eigenspectrum ascertains the presence of travelling waves in the unsteady flows. The standing wave unsteady flow mode is found to yield the highest rate of mixing.


2021 ◽  
Vol 925 ◽  
Author(s):  
Pablo Ouro ◽  
Takafumi Nishino

The efficiency of tidal stream turbines in a large array depends on the balance between negative effects of turbine-wake interactions and positive effects of bypass-flow acceleration due to local blockage, both of which are functions of the layout of turbines. In this study we investigate the hydrodynamics of turbines in an infinitely large array with aligned or staggered layouts for a range of streamwise and lateral turbine spacing. First, we present a theoretical analysis based on an extension of the linear momentum actuator disc theory for perfectly aligned and staggered layouts, employing a hybrid inviscid-viscous approach to account for the local blockage effect within each row of turbines and the viscous (turbulent) wake mixing behind each row in a coupled manner. We then perform large-eddy simulation (LES) of open-channel flow for 28 layouts of tidal turbines using an actuator line method with doubly periodic boundary conditions. Both theoretical and LES results show that the efficiency of turbines (or the power of turbines for a given bulk velocity) in an aligned array decreases as we reduce the streamwise turbine spacing, whereas that in a staggered array remains high and may even increase due to the positive local blockage effect (causing the local flow velocity upstream of each turbine to exceed the bulk velocity) if the lateral turbine spacing is sufficiently small. The LES results further reveal that the amplitude of wake meandering tends to decrease as we reduce the lateral turbine spacing, which leads to a lower wake recovery rate in the near-wake region. These results will help to understand and improve the efficiency of tidal turbines in future large arrays, even though the performance of real tidal arrays may depend not only on turbine-to-turbine interactions within the array but also on macro-scale interactions between the array and natural tidal currents, the latter of which are outside the scope of this study.


Author(s):  
Konstantin Dobroselsky ◽  
Anatoliy Lebedev ◽  
Alexey Safonov ◽  
Sergey Starinskiy ◽  
Vladimir Dulin

The treatment of the hydrophobic properties of solid surfaces is considered as a passive method to reduce the drag in water flows (Rothstein, 2010) and to potentially affect the flow separation and vortex shedding (Sooraj et al., 2020). The manufacturing of surfaces with micro- and nano-scale roughness allows to extend the hydrophobicity towards superhydrophobicity with the contact angle close to 180°. In such conditions the solid surface is not wetted completely and the air-water interphase partially remains on the surface texture. This results in so-called flow slip effect. Therefore, a local phase transition during the flow cavitation or gas effervescence in near-wall low-pressure regions may additionally affect the slip effect for hydrophobic surfaces. The present work is focused on the comparison between cavitating and noncavitating flows around circular cylinders with lateral sectors with hydrophobic and non-hydrophobic coatings. The experiments are performed in a water tunnel, which consists of a water outgassing and cooling/heating section, honeycomb, contraction section, test section and diffuser. The water flow is driven by an electric pump, providing a bulk velocity up to 10 m/s in the transparent test section with 1 m length and 80×150 mm2 rectangular cross-section. The facility is equipped with an ultrasonic flowmeter, temperature and pressure sensors. Besides, the static pressure inside the water tunnel can be varied by using a special shaft section. The measurements are performed by using high-repetition and low-repetition PIV systems. The former is used for the analysis of large-scale flow dynamics in the wake region, whereas the latter one is used for high-resolution measurements in near-wall regions by using a long-distance microscope. The Reynolds number based on the bulk velocity of the flow, diameter of the cylinders (D = 26 mm) and kinematic viscosity of the water is varied up to 2×105..


2021 ◽  
Author(s):  
Shuo Ti ◽  
Tao Chen ◽  
Jiansheng Yao

<p>Large-amplitude electromagnetic ion cyclotron (EMIC) waves induce unique dynamics of charged particle movement in the magnetosphere. In a recent study, modulation of the ion pitch angle in the presence of large-amplitude EMIC waves is observed, and there lacks a good explanation for this phenomenon. We investigate this modulation primarily via a 1-D hybrid simulation model and find that the modulation is caused by the bulk velocity triggered by large-amplitude EMIC waves. Affected by the bulk velocity, the number density of ions will enhance around pitch angle . Beyond that, the ion pitch angle is also modulated by the EMIC waves, and the modulation period is half of the EMIC waves' period. In addition, parameters that affect ion pitch angle modulation, including the wave amplitude, ion energy, ion species, and wave normal angle, are studied in our work.</p>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bei You ◽  
Yuoli Tuo ◽  
Chengzhe Li ◽  
Wei Wang ◽  
Shuang-Nan Zhang ◽  
...  
Keyword(s):  

AbstractA black hole X-ray binary produces hard X-ray radiation from its corona and disk when the accreting matter heats up. During an outburst, the disk and corona co-evolves with each other. However, such an evolution is still unclear in both its geometry and dynamics. Here we report the unusual decrease of the reflection fraction in MAXI J1820+070, which is the ratio of the coronal intensity illuminating the disk to the coronal intensity reaching the observer, as the corona is observed to contrast during the decay phase. We postulate a jet-like corona model, in which the corona can be understood as a standing shock where the material flowing through. In this dynamical scenario, the decrease of the reflection fraction is a signature of the corona’s bulk velocity. Our findings suggest that as the corona is observed to get closer to the black hole, the coronal material might be outflowing faster.


Author(s):  
Samarjeet Singh ◽  
Amitesh Roy ◽  
Reeja K. V. ◽  
Asalatha Nair ◽  
Swetaprovo Chaudhuri ◽  
...  

Abstract We experimentally study thermoacoustic transitions in an annular combustor consisting of sixteen premixed, swirl-stabilized turbulent flames. We show the changes in the characteristics of bifurcations leading to the state of longitudinal thermoacoustic instability (TAI) when equivalence ratio and bulk velocity are systematically varied. Depending upon the bulk velocity, we observe different states of combustor operation when the equivalence ratio is varied. These states include combustion noise, intermittency, low-amplitude TAI, mixed-mode oscillations (MMO), and high-amplitude TAI. We closely examine the special case of MMO that is encountered during the transition from low-amplitude TAI to high-amplitude TAI. We also discuss the global and local flame dynamics observed during the state of MMO. We find that during epochs of low-amplitude oscillations of MMO, all the flames are partially synchronized, while during epochs of high-amplitude oscillations, all the flames are perfectly synchronized. Finally, we replicate the criticalities of bifurcation of the annular combustor in a phenomenological model containing sixth-order nonlinearities.


Author(s):  
Samarjeet Singh ◽  
Amitesh Roy ◽  
K. V. Reeja ◽  
Asalatha Nair ◽  
Swetaprovo Chaudhuri ◽  
...  

Abstract We experimentally study thermoacoustic transitions in an annular combustor consisting of sixteen premixed, swirl-stabilized turbulent flames. We show the changes in the characteristics of bifurcations leading to the state of longitudinal thermoacoustic instability (TAI) when equivalence ratio and bulk velocity are systematically varied. Depending upon the bulk velocity, we observe different states of combustor operation when the equivalence ratio is varied. These states include combustion noise, intermittency, low-amplitude TAI, mixed-mode oscillations (MMO), and high-amplitude TAI. We closely examine the special case of MMO that is encountered during the transition from low-amplitude TAI to high-amplitude TAI. We also discuss the global and local flame dynamics observed during the state of MMO. We find that during epochs of low-amplitude oscillations of MMO, all the flames are partially synchronized, while during epochs of high-amplitude oscillations, all the flames are perfectly synchronized. Finally, we replicate the criticalities of bifurcation of the annular combustor in a phenomenological model containing sixth-order nonlinearities.


2020 ◽  
Vol 32 (4) ◽  
pp. 795-799
Author(s):  
Wei-jie Wang ◽  
Xiao-yu Cui ◽  
Fei Dong ◽  
Wen-qi Peng ◽  
Zhen Han ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document