scholarly journals Predicting the near-wall velocity of wall turbulence using a neural network for particle image velocimetry

2020 ◽  
Vol 32 (11) ◽  
pp. 115105 ◽  
Author(s):  
Hongping Wang ◽  
Zixuan Yang ◽  
Binglin Li ◽  
Shizhao Wang
2002 ◽  
Vol 467 ◽  
pp. 41-56 ◽  
Author(s):  
GAETANO MARIA DI CICCA ◽  
GAETANO IUSO ◽  
PIER GIORGIO SPAZZINI ◽  
MICHELE ONORATO

Particle image velocimetry has been applied to the study of a canonical turbulent boundary layer and to a turbulent boundary layer forced by transversal wall oscillations. This work is part of the research programme at the Politecnico di Torino aerodynamic laboratory with the objective of investigating the response of near-wall turbulence to external perturbations. Results are presented for the optimum oscillation period of 100 viscous time units and for an oscillation amplitude of 320 viscous units. As expected, turbulent velocity fluctuations are considerably reduced by the wall oscillations. Particle image velocimetry has allowed comparisons between the canonical and forced flows in an attempt to find the physical mechanisms by which the wall oscillation influences the near-wall organized motions.


2010 ◽  
Vol 5 (2) ◽  
pp. 55-68
Author(s):  
Andrey V. Boiko Boiko ◽  
Vasily N. Gorev ◽  
Aleksandr V. Dovgal ◽  
Aleksandr M. Sorokin ◽  
Hein Stefan ◽  
...  

Experimental data on linear instability of the laminar separating flow and mean velocity characteristics of the turbulent boundary layer are reported. The results are obtained through wind-tunnel testing of Particle Image Velocimetry (PIV) performed at DLR, Goettingen. Details of the method, as applied to the above problems of fluid mechanics, are considered. The present findings seem helpful during experimental work on subsonic near-wall layers, when focusing on their instantaneous and time-mean velocity characteristics.


Sign in / Sign up

Export Citation Format

Share Document