Numerical prediction of unsteady fluid flow and heat transfer through a stationary curved square duct

2021 ◽  
Author(s):  
Mohammad Sanjeed Hasan ◽  
Rabindra Nath Mondal ◽  
Shinichiro Yanase
2007 ◽  
Vol 44 (4) ◽  
pp. 445-461 ◽  
Author(s):  
N. Benarji ◽  
C. Balaji ◽  
S. P. Venkateshan

Author(s):  
F. Mumic ◽  
B. Sunden

In this work, a numerical study has been performed to simulate the unsteady fluid flow and heat transfer in a transonic high-pressure turbine stage. The main objective of this study is to understand the unsteady flow field and heat transfer in a single transonic turbine stage using an unsteady structured Navier-Stokes solver. For the time accurate computation, a fully implicit time discretization, dual-time stepping, is performed. The results of the CFD simulations are compared with experimental heat transfer and aerodynamic results available for the so-called MT1 turbine stage. The predicted heat transfer and static pressure distributions show reasonable agreement with experimental data. In particular, the results show significant fluctuations in heat transfer and pressure at midspan on the rotor blade, and that the rotor has a limited influence on the heat transfer to the NGV at mid span.


2018 ◽  
Vol 37 ◽  
pp. 73-92 ◽  
Author(s):  
Md Zohurul Islam ◽  
Md Arifuzzaman ◽  
Rabindra Nath Mondal

Numerical study of unsteady fluid flow and heat transfer through a rotating curved rectangular channel with aspect ratio 2 and curvature ratio 0.05 has been performed by using a spectral-based numerical method, and covering a wide range of the rotational parameter, the Taylor number Ta, for both the positive and negative rotation of the channel. In this paper, unsteady flow characteristics are investigated under combined action of the centrifugal, Coriolis and buoyancy forces for the Dean number De = 1000. For positive rotation, we investigated unsteady solutions for 0 ≤Ta ≤500, and it is found that the chaotic flow turns into steady-state flow through periodic or multi-periodic flows. For negative rotation, on the other hand, unsteady solutions are investigated for –500 ≤Ta≤0, and it is found that the unsteady flow undergoes through various flow instabilities. Typical contours of secondary flow patterns and temperature profiles are obtained at several values of Ta, and it is found that the unsteady flow consists of asymmetric two- to eightvortex solutions. The present study shows that convective heat transfer is significantly enhanced as the secondary flow becomes stronger and the chaotic flow enhances heat transfer more effectively than the steady-state or periodic solutions.GANIT J. Bangladesh Math. Soc.Vol. 37 (2017) 73-92


2001 ◽  
Vol 124 (1) ◽  
pp. 11-21 ◽  
Author(s):  
J. Cadafalch ◽  
C. D. Pe´rez-Segarra ◽  
R. Co`nsul ◽  
A. Oliva

This work presents a post-processing tool for the verification of steady-state fluid flow and heat transfer finite volume computations. It is based both on the generalized Richardson extrapolation and the Grid Convergence Index GCI. The observed order of accuracy and a error band where the grid independent solution is expected to be contained are estimated. The results corresponding to the following two and three-dimensional steady-state simulations are post-processed: a flow inside a cavity with moving top wall, an axisymmetric turbulent flow through a compressor valve, a premixed methane/air laminar flat flame on a perforated burner, and the heat transfer from an isothermal cylinder enclosed by a square duct. Discussion is carried out about the certainty of the estimators obtained with the post-processing procedure. They have been shown to be useful parameters in order to assess credibility and quality to the reported numerical solutions.


Sign in / Sign up

Export Citation Format

Share Document