horizontal channel
Recently Published Documents


TOTAL DOCUMENTS

407
(FIVE YEARS 89)

H-INDEX

31
(FIVE YEARS 5)

2022 ◽  
Vol 43 (1) ◽  
pp. 014101
Author(s):  
Yongbo Liu ◽  
Huilong Zhu ◽  
Yongkui Zhang ◽  
Xiaolei Wang ◽  
Weixing Huang ◽  
...  

Abstract A new type of vertical nanowire (VNW)/nanosheet (VNS) FETs combining a horizontal channel (HC) with bulk/back-gate electrode configuration, including Bulk-HC and FD-SOI-HC VNWFET, is proposed and investigated by TCAD simulation. Comparisons were carried out between conventional VNWFET and the proposed devices. FD-SOI-HC VNWFET exhibits better I on/I off ratio and DIBL than Bulk-HC VNWFET. The impact of channel doping and geometric parameters on the electrical characteristic and body factor (γ) of the devices was investigated. Moreover, threshold voltage modulation by bulk/back-gate bias was implemented and a large γ is achieved for wide range V th modulation. In addition, results of I on enhancement and I off reduction indicate the proposed devices are promising candidates for performance and power optimization of NW/NS circuits by adopting dynamic threshold voltage management. The results of preliminary experimental data are discussed as well.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012150
Author(s):  
M V Gorbachev ◽  
V I Terekhov

Abstract Modeling of heat and mass transfer processes in a horizontal channel during evaporative cooling of a moist air flow with regard to the finite thickness of the liquid film is considered. The mathematical model consists of a system of differential equations in the boundary layer approximation. The simulation results have been obtained in a wide range of initial parameters: temperature T 0 = 10÷50°C, humidity φ0=0÷100%, Reynolds number Re=100÷2000. Calculations were carried out at atmospheric pressure. Quantitative analysis of influence of initial parameters of flows on values of parameters of wet air flow at the outlet of the channel with and without taking into account the final thickness of the water film was carried out.


2021 ◽  
Vol 10 (4) ◽  
pp. 552-563
Author(s):  
Rajesh Kumar Chandrawat ◽  
Varun Joshi ◽  
O. Anwar Bég

The dynamics of the interaction between immiscible fluids is relevant to numerous complex flows in nature and industry, including lubrication and coating processes, oil extraction, physicochemical separation techniques, etc. One of the most essential components of immiscible flow is the fluid interface, which must be consistently monitored. In this article, the unsteady flow of two immiscible fluids i.e., an Eringen micropolar and Newtonian liquid is considered in a horizontal channel. Despite the no-slip and hyper-stick shear stress condition at the channel edge, it is accepted that the liquid interface is dynamic, migrating from one position to the next and possibly get absolute change; as a result, The CS (continuum surface) model is integrated with the single moment equation based on the VOF (volume of fluid) approach to trace the interface. The immiscible fluids are considered to flow under three applied pressure gradients (constant, decaying, and periodic) and flow is analyzed under seamless shear stress over the entire interface. The modified cubic b-spline differential quadrature method (MCB-DQM) is used to solve the modeled coupled partial differential equations for the fluid interface evolution. The advection and tracking of the interface with time, wave number, and amplitude are illustrated through graphs. It is observed that the presence of micropolar parameters affects the interface with time. The novelty of the current study is that previous studies (which considered the smooth and unstable movement of the micropolar fluid, the steady stream of two immiscible fluids, and interface monitoring through different modes) are extended and generalized to consider the time-dependent flow of two immiscible fluids namely Eringen micropolar and Newtonian with a moving interface in a horizontal channel. For the decaying pressure gradient case, which requires more time to achieve the steady-state, the peak of the waves resembles those for the constant pressure gradient case. The interface becomes steady for a more extensive time when a constant pressure gradient is applied. The interface becomes stable quickly with time as the micropolar parameter is decreased for the constant pressure gradient case i.e., weaker micropolar fluids encourage faster stabilization of the interface. With periodic pressure gradient, the interface takes more time to stabilize, and the crest of the waves is significantly higher in amplitude compared to the constant and decaying pressure cases. The simulations demonstrate the excellent ability of MCB-DQM to analyze complex interfacial immiscible flows.


2021 ◽  
Vol 4 (8(112)) ◽  
pp. 16-22
Author(s):  
Mahmoud A. Mashkour

The heat convection phenomenon has been investigated numerically (mathematically) for a channel located horizontally and partially heated at a uniform heat flux with forced and free heat convection. The investigated horizontal channel with a fluid inlet and the enclosure was exposed to the heat source from the bottom while the channel upper side was kept with a constant temperature equal to fluid outlet temperature. Transient, laminar, incompressible and mixed convective flow is assumed within the channel. Therefore, the flow field is estimated using Navier Stokes equations, which involves the Boussinesq approximation. While the temperature field is calculated using the standard energy model, where, Re, Pr, Ri are Reynolds number, Prandtl number, and Richardson number, respectively. Reynolds number (Re) was changed during the test from 1 to 50 (1, 10, 25, and 50) for each case study, Richardson (Ri) number was changed during the test from 1 to 25 (1, 5, 10, 15, 20, and, 25). The average Nusselt number (Nuav) increases exponentially with the Reynold number for each Richardson number and the local Nusselt number (NuI) rises in the heating point. Then gradually stabilized until reaching the endpoint of the channel while the local Nusselt number increases with a decrease in the Reynolds number over there. In addition, the streamlines and isotherms patterns in case of the very low value of the Reynolds number indicate very low convective heat transfer with all values of Richardson number. Furthermore, near the heat source, the fluid flow rate rise increases the convection heat transfer that clarified the Nusselt number behavior with Reynolds number indicating that maximum Nu No. are 6, 12, 27 and 31 for Re No. 1, 10, 25 and 50, respectively


2021 ◽  
Vol 378 ◽  
pp. 111175
Author(s):  
Xiaoping Yang ◽  
Pengfei Fu ◽  
Nana Chen ◽  
Yao Zhou ◽  
Jiping Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document