Exact Solutions of Three-Dimensional Transient Navier - Stokes Equations

2013 ◽  
Vol 40 (4) ◽  
pp. 281-311
Author(s):  
Raj K. Singh

New classes of exact solutions of the incompressible Navier-Stokes equations are presented. The method of solution has its origins in that first used by Kelvin ( Phil. Mag . 24 (5), 188-196 (1887)) to solve the linearized equations governing small disturbances in unbounded plane Couette flow. The new solutions found describe arbitrarily large, spatially periodic disturbances within certain two- and three-dimensional ‘ basic ’ shear flows of unbounded extent. The admissible classes of basic flow possess spatially uniform strain rates; they include two- and three- dimensional stagnation point flows and two-dimensional flows with uniform vorticity. The disturbances, though spatially periodic, have time-dependent wavenumber and velocity components. It is found that solutions for the disturbance do not always decay to zero ; but in some instances grow continuously in spite of viscous dissipation. This behaviour is explained in terms of vorticity dynamics.


2019 ◽  
Vol 87 (1) ◽  
Author(s):  
Nolan J. Dyck ◽  
Anthony G. Straatman

Abstract In a 1966 publication, Chi-Yi Wang used the streamfunction in concert with the vorticity equations to develop a methodology for obtaining exact solutions to the incompressible Navier–Stokes equations, now known as the extended Beltrami method. In Wang's approach, the vorticity is represented by the sum of a linear function of the streamfunction and an assumed auxiliary function, such that the vorticity equation can be reduced to a quasi-linear partial differential equation, and exact solutions are obtainable for many choices of the auxiliary function. In the present work, a natural extension of Wang's formulation to three-dimensional flows in arbitrary orthogonal curvilinear coordinates has been derived, wherein two auxiliary functions are formed at the outset, with the caveat that the pressure and velocity components may vary in two spatial dimensions. As is the case with two-dimensional extended Beltrami flows, exact solutions are only obtainable when the forms of the auxiliary functions are “simple enough” to render the governing equations solvable. To demonstrate the solutions which may be obtained using the extended formulation, the well-known Kovasznay flow is generalized to a three-dimensional flow. A unique solution in plane polar coordinates is found. An extension to the solution to Burgers vortex has been derived and discussed in the context of existing literature. Finally, a new 3D swirling flow solution which is the angular analogue to Kovasznay flow has been developed.


2010 ◽  
Vol 23 (11) ◽  
pp. 1388-1396 ◽  
Author(s):  
Gunawan Nugroho ◽  
Ahmed M.S. Ali ◽  
Zainal A. Abdul Karim

1994 ◽  
Vol 274 ◽  
pp. 267-291 ◽  
Author(s):  
Eric Varley ◽  
Brian R. Seymour

A family of exact solutions to the Navier—Stokes equations is used to analyse unsteady three-dimensional viscometric flows that occur in the vicinity of a plane boundary that translates and rotates with time-varying velocities. Such flows are important in the study of flows that are produced by rotating machinery. They are also useful in describing local behaviour in more complex global flows, such as that produced in a shear layer by the passage of a disturbance in the mainstream. An example is the flow produced in a turbulent shear layer by the passage of the core of a Rankine vortex. When the effect of viscosity is unimportant, the use of Lagrangian coordinates reduces the mathematical problem to that of solving a set of linear ordinary differential equations.


2020 ◽  
Vol 14 (4) ◽  
pp. 7369-7378
Author(s):  
Ky-Quang Pham ◽  
Xuan-Truong Le ◽  
Cong-Truong Dinh

Splitter blades located between stator blades in a single-stage axial compressor were proposed and investigated in this work to find their effects on aerodynamic performance and operating stability. Aerodynamic performance of the compressor was evaluated using three-dimensional Reynolds-averaged Navier-Stokes equations using the k-e turbulence model with a scalable wall function. The numerical results for the typical performance parameters without stator splitter blades were validated in comparison with experimental data. The numerical results of a parametric study using four geometric parameters (chord length, coverage angle, height and position) of the stator splitter blades showed that the operational stability of the single-stage axial compressor enhances remarkably using the stator splitter blades. The splitters were effective in suppressing flow separation in the stator domain of the compressor at near-stall condition which affects considerably the aerodynamic performance of the compressor.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 841
Author(s):  
Yuzhen Jin ◽  
Huang Zhou ◽  
Linhang Zhu ◽  
Zeqing Li

A three-dimensional numerical study of a single droplet splashing vertically on a liquid film is presented. The numerical method is based on the finite volume method (FVM) of Navier–Stokes equations coupled with the volume of fluid (VOF) method, and the adaptive local mesh refinement technology is adopted. It enables the liquid–gas interface to be tracked more accurately, and to be less computationally expensive. The relationship between the diameter of the free rim, the height of the crown with different numbers of collision Weber, and the thickness of the liquid film is explored. The results indicate that the crown height increases as the Weber number increases, and the diameter of the crown rim is inversely proportional to the collision Weber number. It can also be concluded that the dimensionless height of the crown decreases with the increase in the thickness of the dimensionless liquid film, which has little effect on the diameter of the crown rim during its growth.


Author(s):  
Eiman B Saheby ◽  
Xing Shen ◽  
Anthony P Hays ◽  
Zhang Jun

This study describes the aerodynamic efficiency of a forebody–inlet configuration and computational investigation of a drone system, capable of sustainable supersonic cruising at Mach 1.60. Because the whole drone configuration is formed around the induction system and the design is highly interrelated to the flow structure of forebody and inlet efficiency, analysis of this section and understanding its flow pattern is necessary before any progress in design phases. The compression surface is designed analytically using oblique shock patterns, which results in a low drag forebody. To study the concept, two inlet–forebody geometries are considered for Computational Fluid Dynamic simulation using ANSYS Fluent code. The supersonic and subsonic performance, effects of angle of attack, sideslip, and duct geometries on the propulsive efficiency of the concept are studied by solving the three-dimensional Navier–Stokes equations in structured cell domains. Comparing the results with the available data from other sources indicates that the aerodynamic efficiency of the concept is acceptable at supersonic and transonic regimes.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 756
Author(s):  
Federico Lluesma-Rodríguez ◽  
Francisco Álcantara-Ávila ◽  
María Jezabel Pérez-Quiles ◽  
Sergio Hoyas

One numerical method was designed to solve the time-dependent, three-dimensional, incompressible Navier–Stokes equations in turbulent thermal channel flows. Its originality lies in the use of several well-known methods to discretize the problem and its parallel nature. Vorticy-Laplacian of velocity formulation has been used, so pressure has been removed from the system. Heat is modeled as a passive scalar. Any other quantity modeled as passive scalar can be very easily studied, including several of them at the same time. These methods have been successfully used for extensive direct numerical simulations of passive thermal flow for several boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document