Surface effects in cylindrical anode particles: Mechanical versus electrochemical performance determined by charging condition in lithium-ion batteries

2021 ◽  
Vol 130 (23) ◽  
pp. 234901
Author(s):  
Amrita Sengupta ◽  
Jeevanjyoti Chakraborty
2013 ◽  
Vol 28 (5) ◽  
pp. 515-520 ◽  
Author(s):  
Zhen-Jun YU ◽  
Yan-Li WANG ◽  
Hong-Gui DENG ◽  
Liang ZHAN ◽  
Guang-Zhi YANG ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
pp. 210-220
Author(s):  
Fangfang Wang ◽  
Ruoyu Hong ◽  
Xuesong Lu ◽  
Huiyong Liu ◽  
Yuan Zhu ◽  
...  

Abstract The high-nickel cathode material of LiNi0.8Co0.15Al0.05O2 (LNCA) has a prospective application for lithium-ion batteries due to the high capacity and low cost. However, the side reaction between the electrolyte and the electrode seriously affects the cycling stability of lithium-ion batteries. In this work, Ni2+ preoxidation and the optimization of calcination temperature were carried out to reduce the cation mixing of LNCA, and solid-phase Al-doping improved the uniformity of element distribution and the orderliness of the layered structure. In addition, the surface of LNCA was homogeneously modified with ZnO coating by a facile wet-chemical route. Compared to the pristine LNCA, the optimized ZnO-coated LNCA showed excellent electrochemical performance with the first discharge-specific capacity of 187.5 mA h g−1, and the capacity retention of 91.3% at 0.2C after 100 cycles. The experiment demonstrated that the improved electrochemical performance of ZnO-coated LNCA is assigned to the surface coating of ZnO which protects LNCA from being corroded by the electrolyte during cycling.


Author(s):  
G. S. Zakharova ◽  
E. Thauer ◽  
A. N. Enyashin ◽  
L. F. Deeg ◽  
Q. Zhu ◽  
...  

AbstractThe potential battery electrode material V2O3/C has been prepared using a sol–gel thermolysis technique, employing vanadyl hydroxide as precursor and different organic acids as both chelating agents and carbon sources. Composition and morphology of resultant materials were characterized by X-ray diffraction, Raman spectroscopy, scanning and transmission electron microscopies, physical sorption, and elemental analysis. Stability and electronic properties of model composites with chemically and physically integrated carbon were studied by means of quantum-chemical calculations. All fabricated composites are hierarchically structured and consist of carbon-covered microparticles assembled of polyhedral V2O3 nanograins with intrusions of amorphous carbon at the grain boundaries. Such V2O3/C phase separation is thermodynamically favored while formation of vanadium (oxy)carbides or heavily doped V2O3 is highly unlikely. When used as anode for lithium-ion batteries, the nanocomposite V2O3/C fabricated with citric acid exhibits superior electrochemical performance with an excellent cycle stability and a specific charge capacity of 335 mAh g−1 in cycle 95 at 100 mA g−1. We also find that the used carbon source has only minor effects on the materials’ electrochemical performance.


Sign in / Sign up

Export Citation Format

Share Document