storage mechanism
Recently Published Documents


TOTAL DOCUMENTS

699
(FIVE YEARS 337)

H-INDEX

52
(FIVE YEARS 15)

Author(s):  
Inhak Song ◽  
Konstantin Khivantsev ◽  
Yong Wang ◽  
János Szanyi

Author(s):  
Brooke A. Christensen ◽  
David C. Lin ◽  
M. Janneke Schwaner ◽  
Craig P. McGowan

Small bipedal hoppers, including kangaroo rats, are thought to not benefit from substantial elastic energy storage and return during hopping. However, recent species-specific material properties research suggests that, despite relative thickness, the ankle extensor tendons of these small hoppers are considerably more compliant than had been assumed. With faster locomotor speeds demanding higher forces, a lower tendon stiffness suggests greater tendon deformation and thus a greater potential for elastic energy storage and return with increasing speed. Using the elastic modulus values specific to kangaroo rat tendons, we sought to determine how much elastic energy is stored and returned during hopping across a range of speeds. In vivo techniques were used to record tendon force in the ankle extensors during steady-speed hopping. Our data support the hypothesis that the ankle extensor tendons of kangaroo rats store and return elastic energy in relation to hopping speed, storing more at faster speeds. Despite storing comparatively less elastic energy than larger hoppers, this relationship between speed and energy storage offer novel evidence of a functionally similar energy storage mechanism, operating irrespective of body size or tendon thickness, across the distal muscle-tendon units of both small and large bipedal hoppers.


ACS Omega ◽  
2022 ◽  
Author(s):  
Zhiping Lin ◽  
Yongqi Chen ◽  
Qi Zhang ◽  
Lingling Bai ◽  
Fugen Wu

2022 ◽  
Author(s):  
Yousef AT Morcos ◽  
Galyna Pryymachuk ◽  
Thorben Hoffmann ◽  
Steffen Luetke ◽  
Antje Gerken ◽  
...  

Asprosin, the C-terminal furin cleavage product of profibrillin-1, was reported to act as a hormone that circulates at nanomolar levels and is recruited to the liver where it induces G protein-coupled activation of the cAMP-PKA pathway and stimulates rapid glucose release into the circulation. Although derived from profibrillin-1, a multidomain extracellular matrix glycoprotein with a ubiquitous distribution in connective tissues, little is known about the tissue distribution of asprosin. In the current view, asprosin is mainly produced by white adipose tissue from where it is released into the blood in monomeric form. Here, by employing newly generated specific asprosin antibodies we monitored the distribution pattern of asprosin in human and murine connective tissues such as placenta, and muscle. Thereby we detected the presence of asprosin positive extracellular fibers. Further, by screening established cell lines for asprosin synthesis we found that most cells derived from musculoskeletal tissues render asprosin into an oligomerized form. This oligomerization is facilitated by transglutaminase activity and requires an intact fibrillin fiber network for proper linear deposition. Our data suggest a new extracellular storage mechanism of asprosin in oligomerized form which may regulate its cellular bioavailability in tissues.


Author(s):  
Cindy Soares ◽  
Begoña Silvan ◽  
Yong-Seok Choi ◽  
Veronica Celorrio ◽  
Giannantonio Cibin ◽  
...  

Here we report the synthesis via ceramic methods of the high-performance Mn-rich Na2.4Al0.4Mn2.6O7 oxygen-redox cathode material for Na-ion batteries which we use as a testbed material to study the effects...


Author(s):  
Li Niu ◽  
Zhonghui Sun ◽  
Zhen-Yi Gu ◽  
Shiyu Gan ◽  
Yingming Ma ◽  
...  

Sodium-ion batteries (SIBs) are receiving increased attention due to their cost-effective and similar energy-storage mechanism to lithium-ion batteries. Metal selenides have been widely studied owing to their relatively high theoretical...


2022 ◽  
Vol 2152 (1) ◽  
pp. 012033
Author(s):  
Guida Lin

Abstract The ballistic transport of electrons and unique structural characteristics of graphene and carbon nanotubes enable them to play an important role in nano electronical appliances. Nanodevices based on carbon nano materials can further reduce device size without affecting performance. Here, this paper analyzes Fin Field-effect transistor (FinFET) and Tunnel Field-effect transistor (TFET) based on graphene nanoribbon (GNR) and carbon nanotube which could be used for reducing power consumption. Then it summarizes the applications of graphene in micro/nano sensors based on the electrical, mechanical, optical, and thermal properties of graphene. Graphene’s single-atom thickness and charge storage mechanism provide itself with great potential in the field of resistive memory. Graphene is also widely used in flexible electronic devices.


Sign in / Sign up

Export Citation Format

Share Document