Uniform attractors for reaction–diffusion equations with a larger class of external forces

2022 ◽  
Vol 63 (1) ◽  
pp. 011508
Author(s):  
Xiangming Zhu ◽  
Chengkui Zhong
2015 ◽  
Vol 16 (01) ◽  
pp. 1650006 ◽  
Author(s):  
Bao Quoc Tang

The existence of a unique random attractors in [Formula: see text] for a stochastic reaction-diffusion equation with time-dependent external forces is proved. Due to the presence of both random and non-autonomous deterministic terms, we use a new theory of random attractors which is introduced in [B. Wang, J. Differential Equations 253 (2012) 1544–1583] instead of the usual one. The asymptotic compactness of solutions in [Formula: see text] is established by combining “tail estimate” technique and some new estimates on solutions. This work improves some recent results about the regularity of random attractors for stochastic reaction-diffusion equations.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Xiangming Zhu ◽  
Chengkui Zhong

<p style='text-indent:20px;'>Existence and structure of the uniform attractors for reaction-diffusion equations with the nonlinearity in a weaker topology space are considered. Firstly, a weaker symbol space is defined and an example is given as well, showing that the compactness can be easier obtained in this space. Then the existence of solutions with new symbols is presented. Finally, the existence and structure of the uniform attractor are obtained by proving the <inline-formula><tex-math id="M1">\begin{document}$ (L^{2}\times \Sigma, L^{2}) $\end{document}</tex-math></inline-formula>-continuity of the processes generated by solutions.</p>


2020 ◽  
Vol 18 (1) ◽  
pp. 1552-1564
Author(s):  
Huimin Tian ◽  
Lingling Zhang

Abstract In this paper, the blow-up analyses in nonlocal reaction diffusion equations with time-dependent coefficients are investigated under Neumann boundary conditions. By constructing some suitable auxiliary functions and using differential inequality techniques, we show some sufficient conditions to ensure that the solution u ( x , t ) u(x,t) blows up at a finite time under appropriate measure sense. Furthermore, an upper and a lower bound on blow-up time are derived under some appropriate assumptions. At last, two examples are presented to illustrate the application of our main results.


Sign in / Sign up

Export Citation Format

Share Document