Microstructural optimization of FexCrNiAl0.5Ti0.5 high entropy alloys toward high ductility

2021 ◽  
Vol 119 (14) ◽  
pp. 141903
Author(s):  
Yu Ji ◽  
Long Zhang ◽  
Xing Lu ◽  
Jingyu Pang ◽  
Yunzhuo Lu ◽  
...  
2020 ◽  
Vol 998 ◽  
pp. 9-14
Author(s):  
Ahmed W. Abdel-Ghany ◽  
Sally Elkatatny ◽  
Mohamed Abdel Hady Gepreel

In the present study, two newly developed non-equiatomic high entropy Al10Cr12Mn28Fe(50-x)Ni(x) alloys (x= 20 & 15 at%, namely: Ni20 & Ni15, respectively) are investigated. The studied HEAs were designed based on thermodynamic principles to maintain high ductility and improve strength. Ingots were prepared using arc-melting then microstructure examinations and mechanical properties for the as-cast alloys were done. The mechanical properties were enhanced for the as-cast material, compared with previously introduced HEAs of the same system, namely Al5Cr12Mn28Fe35Ni20, (Al5) and Al10Cr12Mn23Fe35Ni20, (Al10). Al10Cr12Mn28Fe30Ni20 (Ni20) HEA generally shows the highest compressive yield strength which was improved by ∼7% when compared with previously introduced Al10.


2019 ◽  
Author(s):  
Jack Pedersen ◽  
Thomas Batchelor ◽  
Alexander Bagger ◽  
Jan Rossmeisl

Using the high-entropy alloys (HEAs) CoCuGaNiZn and AgAuCuPdPt as starting points we provide a framework for tuning the composition of disordered multi-metallic alloys to control the selectivity and activity of the reduction of carbon dioxide (CO2) to highly reduced compounds. By combining density functional theory (DFT) with supervised machine learning we predicted the CO and hydrogen (H) adsorption energies of all surface sites on the (111) surface of the two HEAs. This allowed an optimization for the HEA compositions with increased likelihood for sites with weak hydrogen adsorption{to suppress the formation of molecular hydrogen (H2) and with strong CO adsorption to favor the reduction of CO. This led to the discovery of several disordered alloy catalyst candidates for which selectivity towards highly reduced carbon compounds is expected, as well as insights into the rational design of disordered alloy catalysts for the CO2 and CO reduction reaction.


2020 ◽  
Vol 2020 (4) ◽  
pp. 16-22
Author(s):  
A.I. Ustinov ◽  
◽  
V.S. Skorodzievskii ◽  
S.A. Demchenkov ◽  
S.S. Polishchuk ◽  
...  

2020 ◽  
Author(s):  
Yuan-Yuan Tan ◽  
Ming-Yao Su ◽  
Zhou-Can Xie ◽  
Zhong-Jun Chen ◽  
Yu Gong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document