vacuum condensates
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 11)

H-INDEX

14
(FIVE YEARS 2)

Author(s):  
Zhi-Gang Wang

In the QCD sum rules for the tetraquark (molecular) states, the higher-dimensional vacuum condensates play an important role in extracting the tetraquark masses. We carry out the operator product expansion up to the vacuum condensates of dimension-10 and observe that the vacuum condensates of dimensions 6, 8 and 10 have the same expressions but opposite signs for the [Formula: see text]-type and [Formula: see text]-type four-quark currents, which make their influences distinguishable, and they are excellent channels to examine the vacuum saturation approximation. We introduce a parameter [Formula: see text] to parametrize the derivation from the vacuum saturation or factorization approximation, and choose two sets of parameters to examine the influences on the predicted tetraquark masses, which can be confronted to the experimental data in the future. In all the channels, smaller value of the [Formula: see text] leads to better convergent behavior in the operator product expansion, which favors the vacuum saturation approximation.


Author(s):  
Guo-Liang Yu ◽  
Zhi-Gang Wang ◽  
Xiu-Wu Wang ◽  
Hui-Juan Wang

In this paper, we first derive two QCD sum rules QCDSR I and QCDSR II which are, respectively, used to extract observable quantities of the ground states and the first radially excited states of the D-wave vector [Formula: see text] and [Formula: see text] mesons. In our calculations, we consider the contributions of vacuum condensates up to dimension-7 in the operator product expansion. The predicted masses for [Formula: see text] [Formula: see text] meson and [Formula: see text] [Formula: see text] meson are consistent well with the experimental data of [Formula: see text]([Formula: see text]) and [Formula: see text]([Formula: see text]), respectively. Besides, our analysis indicates that it is reliable to assign the recent reported [Formula: see text]([Formula: see text]) state as the [Formula: see text] [Formula: see text] meson. Finally, we obtain the decay constants of these states with QCDSR I and QCDSR II. These predictions are helpful not only to reveal the structure of the newly observed [Formula: see text]([Formula: see text]) state, but also to establish [Formula: see text] meson and [Formula: see text] meson families.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Zhi-Gang Wang

AbstractIn this article, we reexamine the mass spectrum of the ground state triply heavy baryon states with the QCD sum rules by carrying out the operator product expansion up to the vacuum condensates of dimension 6 in a consistent way and preforming a novel analysis. It is for the first time to take into account the three-gluon condensates in the QCD sum rules for the triply heavy baryon states.


2020 ◽  
Vol 2020 (4) ◽  
pp. 16-22
Author(s):  
A.I. Ustinov ◽  
◽  
V.S. Skorodzievskii ◽  
S.A. Demchenkov ◽  
S.S. Polishchuk ◽  
...  

2020 ◽  
Vol 35 (01) ◽  
pp. 2050003 ◽  
Author(s):  
Zhi-Gang wang

In this paper, we restudy the ground state mass spectrum of the diquark–diquark–antiquark-type [Formula: see text] pentaquark states with the QCD sum rules by carrying out the operator product expansion up to the vacuum condensates of dimension 13 in a consistent way. The predicted masses support assigning the [Formula: see text] to be the hidden-charm pentaquark state with [Formula: see text], assigning the [Formula: see text] to be the hidden-charm pentaquark state with [Formula: see text], [Formula: see text] or [Formula: see text], assigning the [Formula: see text] to be the hidden-charm pentaquark state with [Formula: see text] or [Formula: see text].


2020 ◽  
Vol 15 ◽  
pp. 39
Author(s):  
D. Vretenar

Relativistic nuclear energy density functionals are formulated and developed, guided by two important features that establish connections with chiral dynamics and the sym- metry breaking pattern of low-energy QCD: a) strong scalar and vector fields related to in-medium changes of QCD vacuum condensates; b) the long- and intermediate-range interactions generated by one-and two-pion exchange, derived from in-medium chiral per- turbation theory.


2019 ◽  
Vol 34 (26) ◽  
pp. 1950151
Author(s):  
Guo-Liang Yu ◽  
Zhi-Gang Wang

In this paper, we assign the newly reported state [Formula: see text] to be a [Formula: see text]-wave [Formula: see text] meson, and study its mass and decay constant with QCD sum rules by considering the contributions of vacuum condensates up to dimension-6 in the operator product expansion. The predicted mass [Formula: see text] GeV is in agreement with the experimental data [Formula: see text] MeV from the LHCb collaboration. This result supports assigning [Formula: see text] as the [Formula: see text] charmonium meson. In this case, its predicted strong decay width with the [Formula: see text] decay model is compatible with the experimental data.


2019 ◽  
Vol 34 (19) ◽  
pp. 1950097 ◽  
Author(s):  
Zhi-Gang Wang

In this paper, we study the [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] pentaquark molecular states with the QCD sum rules by carrying out the operator product expansion up to the vacuum condensates of dimension [Formula: see text] in a consistent way. The present calculations support assigning the [Formula: see text] to be the [Formula: see text] pentaquark molecular state with [Formula: see text], assigning the [Formula: see text] to be the [Formula: see text] pentaquark molecular state with [Formula: see text], assigning the [Formula: see text] to be the [Formula: see text] pentaquark molecular state with [Formula: see text] or the [Formula: see text] pentaquark molecular state with [Formula: see text]. Special attention is paid to the operator product expansion.


2019 ◽  
Vol 2019 (2) ◽  
pp. 13-21 ◽  
Author(s):  
A.I. Ustinov ◽  
◽  
S.S. Polishchuk ◽  
S.A. Demchenkov ◽  
T.V. Melnichenko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document