Survival of rotational alignment in H2 scattering from Si(100)

2021 ◽  
Vol 155 (17) ◽  
pp. 174705
Author(s):  
Christopher Reilly ◽  
Andrew Hutchison ◽  
Greg O. Sitz
Keyword(s):  
Author(s):  
Hideki Mizu-uchi ◽  
Hidehiko Kido ◽  
Tomonao Chikama ◽  
Kenta Kamo ◽  
Satoshi Kido ◽  
...  

AbstractThe optimal placement within 3 degrees in coronal alignment was reportedly achieved in only 60 to 80% of patients when using an extramedullary alignment guide for the tibial side in total knee arthroplasty (TKA). This probably occurs because the extramedullary alignment guide is easily affected by the position of the ankle joint which is difficult to define by tibial torsion. Rotational direction of distal end of the extramedullary guide should be aligned to the anteroposterior (AP) axis of the proximal tibia to acquire optimal coronal alignment in the computer simulation studies; however, its efficacy has not been proven in a clinical setting. The distal end of the guide can be overly displaced from the ideal position when using a conventional guide system despite the alignment of the AP axis to the proximal tibia. This study investigated the effect of displacement of the distal end of extramedullary guide relative to the tibial coronal alignment while adjusting the rotational alignment of the distal end to the AP axis of the proximal tibia in TKA. A total of 50 TKAs performed in 50 varus osteoarthritic knees using an image-free navigation system were included in this study. The rotational alignment of the proximal side of the guide was adjusted to the AP axis of the proximal tibia. The position of the distal end of the guide was aligned to the center of the ankle joint as viewed from the proximal AP axis (ideal position) and as determined by the navigation system. The tibial intraoperative coronal alignments were recorded as the distal end was moved from the ideal position at 3-mm intervals. The intraoperative alignments were 0.5, 0.9, and 1.4 degrees in valgus alignment with 3-, 6-, and 9-mm medial displacements, respectively. The intraoperative alignments were 0.7, 1.2, and 1.7 degrees in varus alignment with 3-, 6-, and 9-mm lateral displacements, respectively. In conclusion, the acceptable tibial coronal alignment (within 2 degrees from the optimal alignment) can be achieved, although some displacement of the distal end from the ideal position can occur after the rotational alignment of the distal end of the guide is adjusted to the AP axis of the proximal tibia.


Author(s):  
Jong Chan Lee ◽  
Begüm Rukiye Özer ◽  
Thomas Schultz

We investigated the rotational Raman spectrum of pyridine monomer and pyridine dimer with mass-correlated rotational alignment spectroscopy (mass-CRASY) and ab initio calculations. The mass spectrum showed a strong signal for...


2011 ◽  
Vol 26 (2) ◽  
pp. 268-273 ◽  
Author(s):  
Hiroki Watanabe ◽  
Ryuichi Gejo ◽  
Yoshikazu Matsuda ◽  
Ichiro Tatsumi ◽  
Kazuo Hirakawa ◽  
...  

The Knee ◽  
2021 ◽  
Vol 31 ◽  
pp. 64-76
Author(s):  
Takao Kaneko ◽  
Tadashi Igarashi ◽  
Kazutaka Takada ◽  
Shu Yoshizawa ◽  
Hiroyasu Ikegami ◽  
...  

1998 ◽  
Vol 238 (3) ◽  
pp. 481-485 ◽  
Author(s):  
Ming-Liang Wang ◽  
Ke-Li Han ◽  
Shu-Lin Cong ◽  
Guo-Zhong He ◽  
Nan-Quan Lou

1977 ◽  
Vol 66 (9) ◽  
pp. 4126-4132 ◽  
Author(s):  
Millard H. Alexander ◽  
Paul J. Dagdigian

Sign in / Sign up

Export Citation Format

Share Document