raman spectrum
Recently Published Documents


TOTAL DOCUMENTS

2576
(FIVE YEARS 155)

H-INDEX

92
(FIVE YEARS 6)

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 144
Author(s):  
Aleksandr S. Tanichev ◽  
Dmitry V. Petrov

In this work, the effect of nitrogen and carbon dioxide on the depolarization ratio of the ν1 band of methane in the pressure range of 0.1–5 MPa is studied. A high-sensitivity single-pass Raman spectrometer was used to obtain accurate results. Moreover, we took into account the overlap of the ν1 band by the ν3 and ν2 + ν4 bands using the simulation of their spectra. The depolarization ratio of the ν1 band in pure methane is within 0–0.001, and the effect of nitrogen and carbon dioxide on this parameter is negligible in the indicated pressure range. The obtained results are useful for correct simulation of the Raman spectrum of methane at different pressures, which is necessary to improve the accuracy of gas analysis methods using Raman spectroscopy.


2021 ◽  
Author(s):  
Toshihiko Ogura

Abstract Circulating light in the total internal reflection within dielectric spheres or disks is called the whispering gallery mode (WGM), which by itself is highly sensitive to its surface and capable of detecting viruses and single atomic ions. The detection site of the sensors using WGM is created by the evanescent light from the circulating light inside spheres. On the other hand, there have been no reports of observation or discussion of the light orbiting outside the surface of dielectric microspheres. Here we report light orbiting the outer surface of a dielectric microspheres different from the WGM. We observed anomalously enhanced Raman spectrum at the periphery of 3 μm diameter polystyrene (PS) microspheres on a silicon nitride (SiN) film using Raman microscopy. The wavelength intensity of this enhanced Raman spectrum was accompanied by periodic changes due to interference. These features may lead to the development of high-sensitive sensors and optical devices.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1503
Author(s):  
Mian Zhong ◽  
Xin Dai ◽  
Hongxing Xiang ◽  
Bingwei Liu ◽  
Xin Zhao ◽  
...  

Reduced graphene oxide has attracted numerous interests due to its unique, superior electronic, optical, mechanical, and chemical properties. An epoxy resin with excellent mechanical and electrical properties can be obtained by doping with reduced graphene oxide to enhance the function of the polymer. Here, we prepared a uniform reduced graphene oxide/epoxy resin coating with a different reduced graphene oxide content and characterized it using a field-emission scanning electron microscope (FE-SEM), X-ray diffractometer (XRD), Raman, and Fourier transform infrared spectrometer (FTIR). Furthermore, the spectral characteristics of the composite coating in the terahertz band were discussed. The cross-sectional SEM results show that a fold structure with ductile failure was intensively formed due to the compatibility of graphene and polymer materials. Both the Raman G and Raman 2D peaks of reduced graphene oxide were confirmed using Raman spectrum testing. The diffraction peak of reduced graphene oxide at 24° disappeared within the reduced graphene oxide/epoxy resin coating, and a wide diffraction peak of the amorphous structure was formed together. Additionally, the intensity of the Raman spectrum increased significantly with increased reduced graphene oxide content, thereby making the surface electrical resistance of the coatings decrease exponentially. Additionally, the intensity of the terahertz time-domain signal and frequency-domain power spectrum linearly reduced with increased reduced graphene oxide concentration. However, the terahertz absorption coefficient and refractive index both increased gradually with increased reduced graphene oxide doping due to increased orientation polarization in the composite coating.


2021 ◽  
pp. 152194
Author(s):  
Yuxing Xu ◽  
Bei Li ◽  
Jiafei Zhang ◽  
Ge Bai ◽  
Xiaolong Zhang ◽  
...  

2021 ◽  
pp. 128152
Author(s):  
Yinglei Zhao ◽  
Jingnuo Zhang ◽  
Mostafa Gouda ◽  
Chenghao Zhang ◽  
Lei Lin ◽  
...  

2021 ◽  
Author(s):  
Dariusz Szczepanik

Very recently, Liddle and coworkers extended the range of aromaticity to a record seventh row of the periodic table by successful isolation of the crystalline actinide cluster 3 containing at its heart the σ-aromatic tri-thorium ring. In this study we prove that the authors have misinterpreted the experimental Raman spectrum of 3, which eventually led to the wrong conclusions about the role of the σ-aromatic tri-thorium bonding in the synthesized cluster. We demonstrate that the thorium-thorium bond in 3 is not very different from the already known extremely weak actinide-actinide bonds, and the marginal σ-aromatic stabilization in the Th3 ring makes it hardly distinguishable from ordinary non-aromatic rings. Also, we show that the multicenter charge-shift bonding in the Th3Cl6 cage is a vital factor that determines the uniqueness and remarkable thermodynamic stability of 3. By clarifying the misleading conclusions of the original Nature paper and drawing special attention to the essential stabilizing role of actinide-halogen charge-shift bonding, this study may have broader implications for understanding the chemistry of actinides and future attempts to design and synthesize new stable actinide complexes.


Author(s):  
Xin Huang ◽  
Ling Hong ◽  
Yuanyuan Wu ◽  
Miaoxin Chen ◽  
Pengcheng Kong ◽  
...  

Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder in reproductive women where abnormal folliculogenesis is considered as a common characteristic. Our aim is to evaluate the potential of follicular fluid (FF) Raman spectra to predict embryo development and pregnancy outcome, so as to prioritize the best promising embryo for implantation, reducing both physiological and economical burdens of PCOS patients. In addition, the altered metabolic profiles will be identified to explore the aetiology and pathobiology of PCOS. In this study, follicular fluid samples obtained from 150 PCOS and 150 non-PCOS women were measured with Raman spectroscopy. Individual Raman spectrum was analyzed to find biologic components contributing to the occurrence of PCOS. More importantly, the Raman spectra of follicular fluid from the 150 PCOS patients were analyzed via machine-learning algorithms to evaluate their predictive value for oocyte development potential and clinical pregnancy. Mean-centered Raman spectra and principal component analysis (PCA) showed global differences in the footprints of follicular fluid between PCOS and non-PCOS women. Two Raman zones (993–1,165 cm−1 and 1,439–1,678 cm−1) were identified for describing the largest variances between the two groups, with the former higher and the latter lower in PCOS FF. The tentative assignments of corresponding Raman bands included phenylalanine and β -carotene. Moreover, it was found that FF, in which oocytes would develop into high-quality blastocysts and obtain high clinical pregnancy rate, were detected with lower quantification of the integration at 993–1,165 cm−1 and higher quantification of the integration at 1,439–1,678 cm−1 in PCOS. In addition, based on Raman spectra of PCOS FF, the machine-learning algorithms via the fully connected artificial neural network (ANN) achieved the overall accuracies of 90 and 74% in correctly assigning oocyte developmental potential and clinical pregnancy, respectively. The study suggests that the PCOS displays unique metabolic profiles in follicular fluid which could be detected by Raman spectroscopy. Specific bands in Raman spectra have the biomarker potential to predict the embryo development and pregnancy outcome for PCOS patients. Importantly, these data may provide some valuable biochemical information and metabolic signatures that will help us to understand the abnormal follicular development in PCOS.


2021 ◽  
Vol 2097 (1) ◽  
pp. 012019
Author(s):  
Wei Huang

Abstract Carmine is a kind of colorant which is widely used in food, beverage, medicine, cosmetics and tobacco industry. However, excessive use of carmine may lead to the risks of carcinogenic, teratogenic and mutagenic, which seriously threaten the health and safety of consumers. In this paper, DCDR technology is utilized to develop a quantitative method for the detection of carmine, which requires only a small volume deposition of analyte solution (several μL) on a suitable hydrophobic substrate. The conventional Raman spectrum of carmine aqueous solution and corresponding Raman spectrum using DCDR method were compared, illustrating a much higher sensitivity for DCDR method. The Raman spectra of carmine aqueous solution with different concentrations of 100, 50, 10, 8, 4 and 2μg/mL are acquired from the spots on the “coffee-ring” with DCDR method. Using DCDR method, a good linear relationship has been observed between the intensities of the two characteristic peaks, 1364cm−1 as well as 1572cm−1, and the concentrations of the solution, with the linear correlation coefficient of R2>0.99. The results illustrate that DCDR method has a good potential in the quantitative analysis of colorant like carmine, providing a promising technique for a rapid detection for food additives.


Sign in / Sign up

Export Citation Format

Share Document