Three-body potential energy surface for parahydrogen

Author(s):  
Alexander Ibrahim ◽  
Pierre-Nicholas Roy
2020 ◽  
Author(s):  
Marc Riera ◽  
Justin J. Talbot ◽  
Ryan P. Steele ◽  
Francesco Paesani

<div> <div> <div> <p>A quantitative description of the interactions between ions and water is key to characterizing the role played by ions in mediating fundamental processes that take place in aqueous environments. At the molecular level, vibrational spectroscopy provides a unique means to probe the multidimensional potential energy surface of small ion−water clusters. In this study, we combine the MB-nrg potential energy functions recently developed for ion−water interactions with perturbative corrections to vibrational self-consistent field theory and the local-monomer approximation to disentangle many-body effects on the stability and vibrational structure of the Cs+(H2O)3 cluster. Since several low-energy, thermodynamically accessible isomers exist for Cs+(H2O)3, even small changes in the description of the underlying potential energy surface can result in large differences in the relative stability of the various isomers. Our analysis demonstrates that a quantitative account for three-body energies and explicit treatment of cross-monomer vibrational couplings are required to reproduce the experimental spectrum. </p> </div> </div> </div>


2017 ◽  
Vol 19 (37) ◽  
pp. 25707-25716 ◽  
Author(s):  
Frederico V. Prudente ◽  
Jorge M. C. Marques ◽  
Francisco B. Pereira

A global geometry search on a new potential energy surface for Li+Arn clusters revealed that three-body interactions must be included to reproduce ab initio structures and accurate energetic features.


Sign in / Sign up

Export Citation Format

Share Document