ON ASYMPTOTIC “EIGENFUNCTIONS” OF THE CAUCHY PROBLEM FOR A NONLINEAR PARABOLIC EQUATION

1986 ◽  
Vol 54 (2) ◽  
pp. 421-455 ◽  
Author(s):  
V A Galaktionov ◽  
S P Kurdyumov ◽  
A A Samarskiĭ

2021 ◽  
Vol 2131 (3) ◽  
pp. 032043
Author(s):  
M Aripov ◽  
A S Matyakubov ◽  
J O Khasanov ◽  
M M Bobokandov

Abstract In this paper the properties of solutions of nonlinear parabolic equation not in divergence form | x | − 1 ∂ u ∂ t = u q ∂ ∂ x ( | x | n u m − 1 | ∂ u k ∂ x | p − 2 ∂ u ∂ x ) + | x | − 1 u β are studied. Depending on values of the numerical parameters and the initial value, the existence of the global solutions of the Cauchy problem is proved. Constructed asymptotic representation of self-similar solutions of nonlinear parabolic equation not in divergence form, depending on the value in the equation of the numerical parameters necessary and sufficient signs of their existence. The compactly supported solution of the Cauchy problem for a cross-diffusion parabolic equation not in divergence form with a source and a variable density is obtained.



Author(s):  
З.В. Бесаева ◽  
А.Ф. Тедеев

В работе изучается задача Коши для широкого класса квазилнейных параболических уравнений второго порядка с неоднородной плотностью и абсорбцией. Хорошо известно, что для рассматриваемого класса задач без абсорбции и при условии, что плотность стремится к нулю не слишком быстро, имеет место закон сохранения тотальной массы. Однако этот факт не всегда имеет место при наличии абсорбции. В данной работе найдены точные условия на характер нелинейности и поведения неоднородной плотности на бесконечности, которые гарантируют стремление к нулю тотальной массы решения при неограниченном возрастании времени. Другими словами, найден критерий стабилизации к нулю тотальной массы решения в терминах критических показателей. С помощью полученных результатов и локальных оценок типа Нэша - Мозера выводятся точные оценки решения в равномерной метрике.





2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Hui Wang ◽  
Caisheng Chen

AbstractIn this paper, we are interested in $L^{\infty }$ L ∞ decay estimates of weak solutions for the doubly nonlinear parabolic equation and the degenerate evolution m-Laplacian equation not in the divergence form. By a modified Moser’s technique we obtain $L^{\infty }$ L ∞ decay estimates of weak solutiona.







Sign in / Sign up

Export Citation Format

Share Document