Novel germplasm providing resistance to barley yellow dwarf virus in wheat

2001 ◽  
Vol 52 (12) ◽  
pp. 1375 ◽  
Author(s):  
M. G. Francki ◽  
M. G. Francki ◽  
H. W. Ohm ◽  
H. W. Ohm ◽  
J. M. Anderson ◽  
...  

The lack of suitable genes in existing wheat germplasm collections makes breeding for specific traits a difficult task. Although tolerance to barley yellow dwarf viruses (BYDV) has been reported in wheat accessions, there are no suitable levels of resistance to BYDV, so genes are sought from wild relatives. The ability for Thinopyrum species to inhibit replication of BYDV makes them attractive sources of resistance for germplasm development. Breeding programs are exploiting Thinopyrum species to develop wheat germplasm resistant to BYDV. The transfer of genes from Thinopyrum into wheat by wide crossing and selecting progeny using molecular markers identified suitable material to some strains of BYDV. The implementation of molecular marker technology has been useful for rapid selection of wheat lines with resistance to some strains of BYDV in a breeding program. However, it is now clear that Thinopyrum species contain a number of resistance genes on different genomes and homoeologous chromosomes. In order to achieve broad-spectrum resistance to the various serotypes of the BYDV complex it will be best to combine a number of these genes. Research efforts are now focussed on introgressing other genes from Thinopyrum into wheat that provide resistance to several additional strains of BYDV. Molecular markers will play an important role during selection in pyramiding genes to develop wheat germplasm with broadspectrum BYDV resistance.

BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Shormin Choudhury ◽  
Philip Larkin ◽  
Rugen Xu ◽  
Matthew Hayden ◽  
Kerrie Forrest ◽  
...  

Abstract Background Barley yellow dwarf (BYD) is an important virus disease that causes significant reductions in wheat yield. For effective control of Barley yellow dwarf virus through breeding, the identification of genetic sources of resistance is key to success. In this study, 335 geographically diverse wheat accessions genotyped using an Illumina iSelect 90 K single nucleotide polymorphisms (SNPs) bead chip array were used to identify new sources of resistance to BYD in different environments. Results A genome-wide association study (GWAS) performed using all the generalised and mixed linkage models (GLM and MLM, respectively) identified a total of 36 significant marker-trait associations, four of which were consistently detected in the K model. These four novel quantitative trait loci (QTL) were identified on chromosomes 2A, 2B, 6A and 7A and associated with markers IWA3520, IWB24938, WB69770 and IWB57703, respectively. These four QTL showed an additive effect with the average visual symptom score of the lines containing resistance alleles of all four QTL being much lower than those with less favorable alleles. Several Chinese landraces, such as H-205 (Baimazha) and H-014 (Dahongmai) which have all four favorable alleles, showed consistently higher resistance in different field trials. None of them contained the previously described Bdv2, Bdv3 or Bdv4 genes for BYD resistance. Conclusions This study identified multiple novel QTL for BYD resistance and some resistant wheat genotypes. These will be useful for breeders to generate combinations with and/or without Bdv2 to achieve higher levels and more stable BYD resistance.


Genome ◽  
1995 ◽  
Vol 38 (2) ◽  
pp. 406-413 ◽  
Author(s):  
H. Sharma ◽  
H. Ohm ◽  
L. Goulart ◽  
R. Lister ◽  
R. Appels ◽  
...  

Wheatgrasses (species of Agropyron complex) have previously been reported to be resistant to barley yellow dwarf virus (BYDV). To introgress this resistance into wheat, Triticum aestivum × Thinopyrum (Agropyron) intermedium hybrids were advanced through a backcrossing program and reaction to BYDV, as determined by enzyme-linked immunosorbent assay (ELISA), is reported for the first time in backcross populations of wide hybrids between wheat and wheatgrasses. ELISA values revealed highly resistant to highly susceptible segregants in backcrosses. BYDV resistance was expressed in some backcross derivatives. Continued selection, based on cytology and ELISA in each generation, eliminated most of the unwanted wheatgrass chromosomes and produced self-fertile BYDV resistant wheat lines. The BYDV resistant lines with 2n = 42 had normal chromosome pairing similar to wheat, and their F1 hybrids with wheat had two univalents. DNA analyses showed that the source of alien chromatin in these BYDV resistant wheat lines is distinguishable from that in other Th. intermedium derived BYDV resistant wheat lines. Chromosome pairing and restriction fragment length polymorphism analyses indicated that the 42 chromosome resistant Purdue wheat lines are substitution lines in which chromosome 7D was replaced by a chromosome from Th. intermedium that was carrying gene(s) for BYDV resistance.Key words: BYDV, Agropyron, Thinopyrum, wheat, backcrosses, Southern blots.


Sign in / Sign up

Export Citation Format

Share Document