wheat germplasm
Recently Published Documents


TOTAL DOCUMENTS

493
(FIVE YEARS 82)

H-INDEX

40
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Gabriel Wolter Lima ◽  
Caique Machado e Silva ◽  
Henrique Caletti Mezzomo ◽  
Cleiton Renato Casagrande ◽  
Tiago Olivoto ◽  
...  

2022 ◽  
Vol 54 (4) ◽  
Author(s):  
Rizwan Qaiser ◽  
Zahid Akram ◽  
Shahzad Asad ◽  
Inam-Ul Haq ◽  
Saad Imran Malik ◽  
...  

2021 ◽  
Author(s):  
Anuj Choudhary ◽  
Nirmaljit Kaur ◽  
Achla Sharma ◽  
Antul Kumar

Author(s):  
Fengyun Ma ◽  
Anne Sturbaum ◽  
Byung‐Kee Baik
Keyword(s):  

2021 ◽  
Vol 9 (3) ◽  
pp. 185-198 ◽  
Author(s):  
Muhammad Abdul Hannan ◽  
Nihar Ranjan Saha ◽  
Swapan Kumar Roy ◽  
Sun-Hee Woo ◽  
Muhammad Shahidul Haque

2021 ◽  
Vol 12 ◽  
Author(s):  
Mustafa Zakieh ◽  
David S. Gaikpa ◽  
Fernanda Leiva Sandoval ◽  
Marwan Alamrani ◽  
Tina Henriksson ◽  
...  

Fusarium head blight (FHB) is one of the economically important diseases of wheat as it causes severe yield loss and reduces grain quality. In winter wheat, due to its vernalization requirement, it takes an exceptionally long time for plants to reach the heading stage, thereby prolonging the time it takes for characterizing germplasm for FHB resistance. Therefore, in this work, we developed a protocol to evaluate winter wheat germplasm for FHB resistance under accelerated growth conditions. The protocol reduces the time required for plants to begin heading while avoiding any visible symptoms of stress on plants. The protocol was tested on 432 genotypes obtained from a breeding program and a genebank. The mean area under disease progress curve for FHB was 225.13 in the breeding set and 195.53 in the genebank set, indicating that the germplasm from the genebank set had higher resistance to FHB. In total, 10 quantitative trait loci (QTL) for FHB severity were identified by association mapping. Of these, nine QTL were identified in the combined set comprising both genebank and breeding sets, while two QTL each were identified in the breeding set and genebank set, respectively, when analyzed separately. Some QTLs overlapped between the three datasets. The results reveal that the protocol for FHB evaluation integrating accelerated growth conditions is an efficient approach for FHB resistance breeding in winter wheat and can be even applied to spring wheat after minor modifications.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pooja Sihag ◽  
Vijeta Sagwal ◽  
Anuj Kumar ◽  
Priyanka Balyan ◽  
Reyazul Rouf Mir ◽  
...  

A large proportion of the Asian population fulfills their energy requirements from wheat (Triticum aestivum L.). Wheat quality and yield are critically affected by the terminal heat stress across the globe. It affects approximately 40% of the wheat-cultivating regions of the world. Therefore, there is a critical need to develop improved terminal heat-tolerant wheat varieties. Marker-assisted breeding with genic simple sequence repeats (SSR) markers have been used for developing terminal heat-tolerant wheat varieties; however, only few studies involved the use of microRNA (miRNA)-based SSR markers (miRNA-SSRs) in wheat, which were found as key players in various abiotic stresses. In the present study, we identified 104 heat-stress-responsive miRNAs reported in various crops. Out of these, 70 miRNA-SSR markers have been validated on a set of 20 terminal heat-tolerant and heat-susceptible wheat genotypes. Among these, only 19 miRNA-SSR markers were found to be polymorphic, which were further used to study the genetic diversity and population structure. The polymorphic miRNA-SSRs amplified 61 SSR loci with an average of 2.9 alleles per locus. The polymorphic information content (PIC) value of polymorphic miRNA-SSRs ranged from 0.10 to 0.87 with a mean value of 0.48. The dendrogram constructed using unweighted neighbor-joining method and population structure analysis clustered these 20 wheat genotypes into 3 clusters. The target genes of these miRNAs are involved either directly or indirectly in providing tolerance to heat stress. Furthermore, two polymorphic markers miR159c and miR165b were declared as very promising diagnostic markers, since these markers showed specific alleles and discriminated terminal heat-tolerant genotypes from the susceptible genotypes. Thus, these identified miRNA-SSR markers will prove useful in the characterization of wheat germplasm through the study of genetic diversity and population structural analysis and in wheat molecular breeding programs aimed at terminal heat tolerance of wheat varieties.


Author(s):  
Yuefeng Ruan ◽  
Asheesh Singh ◽  
Ron Knox ◽  
Ron DePauw ◽  
James Menzies ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document