Genetic history of the pedigree Poll Hereford breed in Australia: effect of the importation ban

1979 ◽  
Vol 30 (4) ◽  
pp. 767 ◽  
Author(s):  
GL Toll ◽  
JSF Barker

Registrations of animals in 1975 were used in a study of the importance of Imported and Horned animals and of individual herds and animals, the degree of inbreeding and the generation length. Results were compared with an earlier analysis (1960) of the breed, and considered in relation to the prohibition on the importation of ruminant animals into Australia from 1959 to 1969. The rate of increase in inbreeding (0.44% per generation) and the average generation length (5.3 years) have remained relatively stable throughout the breed history in Australia. While there has been some decrease in the emphasis on Imported animals, the breed maintains a high relationship to animals imported since 1930, and six of the 15 important animals (relationship to breed greater than 2.0%) were imported. It is concluded that the importation prohibition has had little effect on the genetic history of the breed, because of line breeding to bulls imported prior to 1959.

1986 ◽  
Vol 16 (5) ◽  
pp. 1013-1018 ◽  
Author(s):  
Lauren Fins ◽  
Lisa W. Seeb

Seed samples from 19 stands of Larixoccidentalis Nutt. were analyzed for electrophoretic variation at 23 loci. Because sample sizes consisted of only 9 or 10 trees per stand (18–20 alleles per locus per stand), samples were grouped by geographic proximity into four larger samples. For all measures of variation, this species scored lower than most, but within the range observed for other western conifers. Most of the variation was found within rather than between the population groups. The single southern sample appeared to be genetically distinct from the others. Although some variation was observed between individual stand samples in expected heterozygosity, the consistently low values for all samples suggest that genetic drift has played a major role in the genetic history of the species in the Inland Empire, both through its glacial history in postulated refugia and through fire history in recent times.


PLoS ONE ◽  
2013 ◽  
Vol 8 (9) ◽  
pp. e73006 ◽  
Author(s):  
José Raul Sandoval ◽  
Daniela R. Lacerda ◽  
Marilza S. A. Jota ◽  
Alberto Salazar-Granara ◽  
Pedro Paulo R. Vieira ◽  
...  

2014 ◽  
Vol 74 (3) ◽  
pp. 691-697 ◽  
Author(s):  
PP Marafeli ◽  
PR Reis ◽  
EC. da Silveira ◽  
GC Souza-Pimentel ◽  
MA. de Toledo

The predatory mite, Neoseiulus californicus(McGregor, 1954) (Acari: Phytoseiidae) is one of the principal natural enemies of tetranychid mites in several countries, promoting efficient control of those mites in several food and ornamental crops. Pest attacks such as that of the spider mite, Tetranychus urticaeKoch, 1836 (Acari: Tetranychidae), is one of the problems faced by farmers, especially in the greenhouse, due to the difficulty of its control with the use of chemicals because of the development of fast resistance making it hard to control it. The objective of this work was to study the life history of the predatory mite N. californicus as a contribution to its mass laboratory rearing, having castor bean plant [Ricinus communis L. (Euphorbiaceae)] pollen as food, for its subsequent use as a natural enemy of T. urticae on a cultivation of greenhouse rosebushes. The studies were carried out in the laboratory, at 25 ± 2°C of temperature, 70 ± 10% RH and a 14 hour photophase. The biological aspects and the fertility life table were appraised. Longevity of 32.9 days was verified for adult females and 40.4 days for males. The intrinsic rate of increase (rm) was 0.2 and the mean generation time (T) was 17.2 days. The population doubled every 4.1 days. The results obtained were similar to those in which the predatory mite N. californicus fed on T. urticae.


BMC Genomics ◽  
2013 ◽  
Vol 14 (Suppl 1) ◽  
pp. S10 ◽  
Author(s):  
Filippo Utro ◽  
Marc Pybus ◽  
Laxmi Parida
Keyword(s):  

Science ◽  
2015 ◽  
Vol 349 (6250) ◽  
pp. 838-840 ◽  
Author(s):  
LZ

Author(s):  
Arnaud Estoup ◽  
Paul Verdu ◽  
Jean-Michel Marin ◽  
Christian Robert ◽  
Alex Dehne-Garcia ◽  
...  

2020 ◽  
Vol 25 (3) ◽  
pp. 479-490
Author(s):  
Ming-ying Lin ◽  
Chin-hsing Lin ◽  
Yen-po Lin ◽  
Ching-tzu Tseng

This study was conducted to further understand the biology of Eutetranychus africanus Tucker, a newly invasive pest mite in Taiwan that can cause serious damage to papaya. We report the life history of E. africanus on papaya in laboratory conditions at 12, 17, 22, 27 and 32 ± 0.5 °C, with 70 ± 5 % relative humidity and a photoperiod of L12: D12. Eggs did not hatch at 12 °C. Both developmental duration and longevity were significantly shortened with the increase of temperature. The longest and shortest developmental durations of the immature stage were 37.28 days at 17 °C and 8.70 days at 32 °C, respectively. The longevity of both sexes varied similarly with the change in temperature, with shorter lifespan in males: Females survived for 3.64 days (shortest) at 32 °C to 17.50 days (longest) at 17 °C, whereas males survived for 11.00 days (longest) at 17 °C to 2.57 days (shortest) at 32 °C. The differences in fecundity were significant among all tested temperatures, with 17.61 eggs/female at 27 °C being the highest. The low developmental threshold and thermal summation of the full immature stage were 11.48 °C and 163.93 degree-days, respectively. In two-sex life table analysis, population parameters were significantly affected by temperature except the net reproduction rate. The highest intrinsic rate of increase was 0.1221 day−1 at 27 °C; the average generation time was the shortest (12.61 days) at 32 °C and the longest (48.70 days) at 17 °C. The highest net reproduction rate was 5.06 eggs/female at 27 °C. This report contributes background knowledge to the management of the damage caused by E. africanuson papaya.This study was conducted to further understand the biology of Eutetranychus africanus Tucker, a newly invasive pest mite in Taiwan that can cause serious damage to papaya. We report the life history of E. africanus on papaya in laboratory conditions at 12, 17, 22, 27 and 32 ± 0.5 °C, with 70 ± 5 % relative humidity and a photoperiod of L12: D12. Eggs did not hatch at 12 °C. Both developmental duration and longevity were significantly shortened with the increase of temperature. The longest and shortest developmental durations of the immature stage were 37.28 days at 17 °C and 8.70 days at 32 °C, respectively. The longevity of both sexes varied similarly with the change in temperature, with shorter lifespan in males: Females survived for 3.64 days (shortest) at 32 °C to 17.50 days (longest) at 17 °C, whereas males survived for 11.00 days (longest) at 17 °C to 2.57 days (shortest) at 32 °C. The differences in fecundity were significant among all tested temperatures, with 17.61 eggs/female at 27 °C being the highest. The low developmental threshold and thermal summation of the full immature stage were 11.48 °C and 163.93 degree-days, respectively. In two-sex life table analysis, population parameters were significantly affected by temperature except the net reproduction rate. The highest intrinsic rate of increase was 0.1221 day−1 at 27 °C; the average generation time was the shortest (12.61 days) at 32 °C and the longest (48.70 days) at 17 °C. The highest net reproduction rate was 5.06 eggs/female at 27 °C. This report contributes background knowledge to the management of the damage caused by E. africanus on papaya.


Sign in / Sign up

Export Citation Format

Share Document