scholarly journals Mass to Light Ratio, Initial Mass Function, and Chemical Evolution in Disk Galaxies

2004 ◽  
Vol 21 (2) ◽  
pp. 144-147 ◽  
Author(s):  
L. Portinari ◽  
J. Sommer-Larsen ◽  
R. Tantalo

AbstractCosmological simulations of disk galaxy formation, when compared to the observed Tully–Fisher relation, suggest a low mass to light (M/L) ratio for the stellar component in spirals. We show that a number of 'bottom-light' initial mass functions (IMFs) suggested independently in the literature, do imply M/L ratios as low as required, at least for late type spirals (Sbc–Sc). However the typical M/L ratio, and correspondingly the zero point of the Tully–Fisher relation, is expected to vary considerably with Hubble type.Bottom-light IMFs tend to have a metal production in excess of what is typically estimated for spiral galaxies. Suitable tuning of the IMF slope and mass limits, post-supernova fallback of metals onto black holes or metal outflows must then be invoked, to reproduce the observed chemical properties of disk galaxies.

2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Dennis Zaritsky

Galaxy scaling relations, which describe a connection between ostensibly unrelated physical characteristics, testify to an underlying order in galaxy formation that requires understanding. I review the development of a scaling relation that (1) unites the well-known fundamental plane (FP) relation of giant elliptical galaxies and Tully-Fisher (TF) relation of disk galaxies, (2) fits low mass spheroidal galaxies, including the ultrafaint satellites of our galaxy, (3) explains the apparent shift of lenticular galaxies relative to both FP or TF, (4) describes all stellar dynamical systems, including systems with no dark matter (stellar clusters), (5) associates explicitly the numerical coefficients that account for the apparent tilt of the FP away from the expectation drawn from the virial theorem with variations in the total mass-to-light ratio of galaxies within the half-light radius, (6) connects with results that demonstrate the robustness of mass estimators when applied at the half-light radius, and (7) results in smaller scatter for disk galaxies than the TF relation. I review two applications: (1) the cross-calibration of distance measurement methods and (2) the determination of mass-to-light ratios of simple stellar populations and implications for the stellar initial mass function.


1998 ◽  
Vol 508 (1) ◽  
pp. 347-369 ◽  
Author(s):  
K. L. Luhman ◽  
G. H. Rieke ◽  
C. J. Lada ◽  
E. A. Lada

2006 ◽  
Vol 460 (1) ◽  
pp. 133-144 ◽  
Author(s):  
F. Damiani ◽  
G. Micela ◽  
S. Sciortino ◽  
N. Huélamo ◽  
A. Moitinho ◽  
...  

Author(s):  
María Rosa Zapatero Osorio ◽  
José Caballero ◽  
Eduardo L. Martín ◽  
Víctor J. S. Béjar ◽  
Rafael Rebolo

1999 ◽  
Vol 186 ◽  
pp. 243-250
Author(s):  
Claus Leitherer

Starburst galaxies are currently forming massive stars at prodigious rates. I discuss the star-formation histories and the shape of the initial mass function, with particular emphasis on the high- and on the low-mass end. The classical Salpeter IMF is consistent with constraints from observations of the most massive stars, irrespective of environmental properties. The situation at the low-mass end is less clear: direct star counts in nearby giant H II regions show stars down to ~1 M⊙, whereas dynamical arguments in some starburst galaxies suggest a deficit of such stars.


2000 ◽  
Vol 541 (2) ◽  
pp. 977-1003 ◽  
Author(s):  
Joan R. Najita ◽  
Glenn P. Tiede ◽  
John S. Carr

Sign in / Sign up

Export Citation Format

Share Document