Potential impact of elevated atmospheric carbon dioxide and climate change on Victorian wheat marketing grades and value

2019 ◽  
Vol 70 (11) ◽  
pp. 926
Author(s):  
Chris J. Korte ◽  
Patrick Wilson ◽  
Brian Kearns ◽  
Glenn J. Fitzgerald ◽  
Joe F. Panozzo ◽  
...  

The potential impact of elevated atmospheric carbon dioxide concentration ([CO2]) and future climate predicted for 2050 on wheat marketing grades and grain value was evaluated for Victoria, Australia. This evaluation was based on measured grain yield and quality from the Australian Grains FACE program and commercial grain delivery data from Victoria for five seasons (2009–13). Extrapolation of relationships derived from field experimentation under elevated [CO2] to the Victorian wheat crop indicated that 34% of grain would be downgraded by one marketing grade (range 1–62% depending on season and region) because of reduced protein concentration; and that proportions of high-protein wheat grades would reduce and proportions of lower protein grades would increase, with the largest increase in the Australian Standard White (ASW1) grade. Simulation modelling with predicted 2050 [CO2] and future climate indicated reduced wheat yields compared with 2009–13 but higher and lower grain quality depending on region. The Mallee Region was most negatively affected by climate change, with a predicted 43% yield reduction and 43% of grain downgraded by one marketing grade. Using 2016 prices, the value of Victorian wheat grain was influenced mainly by production in the different scenarios, with quality changes in different scenarios having minimal impact on grain value.

2021 ◽  
pp. 5-16
Author(s):  
Kneev Sharma ◽  
Dimitre Karamanev

Understanding the fundamental relationship between atmospheric carbon dioxide concentration and temperature rise is essential for tackling the problem of climate change that faces us today. Misconceptions regarding the relationship are widespread due to media and political influences. This investigation aims to address the popular misconception that CO2 concentration directly and naturally leads to global temperature rise. While anthropogenic CO2 emissions seem to affect the rising global atmospheric temperature with a confidence of 95%, it falters when the historical relationship using ice core data is studied. This investigation uses two statistical approaches to determine an accurate range and direction for this important relationship. Through a combined approach, it was found that historically CO2 concentration in the last 650 000 years lags global temperature rise by 1020-1080 years with a maximum correlation coefficient of 0.8371-0.8372. This result is important for the investigation of climate change.


Sign in / Sign up

Export Citation Format

Share Document