tundra ecosystem
Recently Published Documents


TOTAL DOCUMENTS

163
(FIVE YEARS 43)

H-INDEX

32
(FIVE YEARS 3)

2021 ◽  
Vol 13 (23) ◽  
pp. 4933
Author(s):  
Caixia Liu ◽  
Huabing Huang ◽  
Fangdi Sun

As Arctic warming continues, its impact on vegetation greenness is complex, variable and inherently scale-dependent. Studies with multiple spatial resolution satellite observations, with 30 m resolution included, on tundra greenness have been implemented all over the North American tundra. However, finer resolution studies on the greenness trends in the Russian tundra have only been carried out at a limited local or regional scale and the spatial heterogeneity of the trend remains unclear. Here, we analyzed the fine spatial resolution dataset Landsat archive from 1984 to 2018 over the entire Russian tundra and produced pixel-by-pixel greenness trend maps with the support of Google Earth Engine (GEE). The entire Russian tundra was divided into six geographical regions based on World Wildlife Fund (WWF) ecoregions. A Theil–Sen regression (TSR) was used for the trend identification and the changed pixels with a significance level p < 0.05 were retained in the final results for a subsequent greening/browning trend analysis. Our results indicated that: (1) the number of valid Landsat observations was spatially varied. The Western and Eastern European Tundras (WET and EET) had denser observations than other regions, which enabled a trend analysis during the whole study period from 1984 to 2018; (2) the most significant greening occurred in the Yamal-Gydan tundra (WET), Bering tundra and Chukchi Peninsula tundra (CT) during 1984–2018. The EET had a greening trend of 2.3% and 6.6% and the WET of 3.4% and 18% during 1984–1999 and 2000–2018, respectively. The area of browning trend was relatively low when we first masked the surface water bodies out before the trend analysis; and (3) the Landsat-based greenness trend was broadly similar to the AVHRR-based trend over the entire region but AVHRR retrieved more browning areas due to spectral mixing adjacent effects. Higher resolution images and field measurement studies are strongly needed to understand the vegetation trend over the Russian tundra ecosystem.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tyler J. Murchie ◽  
Alistair J. Monteath ◽  
Matthew E. Mahony ◽  
George S. Long ◽  
Scott Cocker ◽  
...  

AbstractThe temporal and spatial coarseness of megafaunal fossil records complicates attempts to to disentangle the relative impacts of climate change, ecosystem restructuring, and human activities associated with the Late Quaternary extinctions. Advances in the extraction and identification of ancient DNA that was shed into the environment and preserved for millennia in sediment now provides a way to augment discontinuous palaeontological assemblages. Here, we present a 30,000-year sedimentary ancient DNA (sedaDNA) record derived from loessal permafrost silts in the Klondike region of Yukon, Canada. We observe a substantial turnover in ecosystem composition between 13,500 and 10,000 calendar years ago with the rise of woody shrubs and the disappearance of the mammoth-steppe (steppe-tundra) ecosystem. We also identify a lingering signal of Equus sp. (North American horse) and Mammuthus primigenius (woolly mammoth) at multiple sites persisting thousands of years after their supposed extinction from the fossil record.


2021 ◽  
Author(s):  
Jessica Plein ◽  
Rulon W. Clark ◽  
Kyle A. Arndt ◽  
Walter C. Oechel ◽  
Douglas Stow ◽  
...  

Abstract. The Arctic is warming at double the average global rate, affecting the carbon cycle of tundra ecosystems. Most research on carbon fluxes from Arctic tundra ecosystems has focused on abiotic environmental controls (e.g. temperature, rainfall, or radiation). However, Arctic tundra vegetation, and therefore the carbon balance of these ecosystems, can be substantially impacted by herbivory. In this study we tested how vegetation consumption by brown lemmings (Lemmus trimucronatus) can impact carbon exchange of a wet-sedge tundra ecosystem near Utqiaġvik, Alaska during the summer, and the recovery of vegetation during a following summer. We placed brown lemmings in individual enclosure plots and tested the impact of lemmings’ herbivory on carbon dioxide (CO2) and methane (CH4) fluxes and the normalized difference vegetation index (NDVI) immediately after lemming removal and during the following growing season. During the first summer of the experiment, lemmings’ herbivory reduced plant biomass (as shown by the decrease in the NDVI) and decreased CO2 uptake, while not significantly impacting CH4 emissions. Methane emissions were likely not significantly affected due to CH4 being produced deeper in the soil and escaping from the stem bases of the vascular plants. The summer following the lemming treatments, NDVI and CO2 fluxes returned to magnitudes similar to those observed before the start of the experiment, suggesting recovery of the vegetation, and a transitory nature of the impact of lemming herbivory. Overall, lemming herbivory has short-term but substantial effects on carbon sequestration by vegetation and might contribute to the considerable interannual variability in CO2 fluxes from tundra ecosystems.


2021 ◽  
Author(s):  
Yumei Zhou ◽  
Ming Yang ◽  
Zhijuan Tai ◽  
Jingjing Jia ◽  
Dongtao Luan ◽  
...  

Abstract Background: It is critical to understand the sensitivity, response direction and magnitude of carbohydrates and secondary compounds to warming for predicting the structure and function of the tundra ecosystem towards future climate change. Results: Open-top chambers (OTCs) were used to passively increase air and soil temperatures on Changbai Mountain alpine tundra. After seven years’ continuous warming, the vegetation coverage, nonstructural carbohydrates (soluble sugars and starch) and secondary compounds (total phenols, flavonoids and triterpenes) of leaves and roots in three dominant dwarf shrubs, Dryas octopetala var. asiatica, Rhododendron confertissimum and Vaccinium uliginosum, were investigated during the growing season. Warming did not significantly affect the concentrations of carbohydrates but decreased total phenols for the three species. Carbohydrates and secondary compounds showed significantly seasonal pattern and species-specific variation. No significant trade-off between carbohydrates and secondary compounds was observed. Warming significantly increased the coverage of Dr. octopetala var. asiatica, did not change it for V. uliginosum and decreased it for Rh. confertissimum. Rh. confertissimum had significantly lower carbohydrates and higher secondary compounds investment than the other two species. Enhanced dominance and competitiveness of Dr. octopetala var. asiatica was companied by increased trend in carbohydrate concentrations and decreased ratio of secondary compounds to total carbon in the warming OTCs. Conclusions: We, therefore, predict that Dr. octopetala var. asiatica will continue to maintain dominant status, but the competition ability of V. uliginosum could gradually decrease with warming, leading to changes in species composition and community structure of the Changbai tundra ecosystem under future climate warming.


2021 ◽  
Author(s):  
Nicholas J. Bouskill ◽  
Zelalem Mekonnen ◽  
Qing Zhu ◽  
Robert Grant ◽  
William Riley

Abstract Tundra ecosystems have experienced an increased frequency of fire in recent decades, and this trend is predicted to continue throughout the 21st Century. Post-fire recovery is underpinned by complex interactions among microbial functional groups that drive nutrient cycling post-fire. Here we use a mechanistic model to demonstrate an acceleration of the nitrogen cycle post-fire driven by changes in niche space and microbial competitive dynamics. We show that over the first 5-years post-fire, fast-growing bacterial heterotrophs colonize regions of the soil previously occupied by slower-growing saprotrophic fungi. The bacterial heterotrophs mineralize organic matter, releasing organic and inorganic nutrients into the soil. This pathway outweighs new sources of nitrogen and facilitates the recovery of plant productivity. We broadly show here that while consideration of distinct microbial metabolisms related to carbon and nutrient cycling remains rare in terrestrial ecosystem models, they are important when considering the rate of ecosystem recovery post-disturbance and the feedback to soil nutrient cycles on centennial timescales.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11850
Author(s):  
Francisco J. Ancin-Murguzur ◽  
Vera H. Hausner

Complex interactions among multiple abiotic and biotic drivers result in rapid changes in ecosystems worldwide. Predicting how specific interactions can cause ripple effects potentially resulting in abrupt shifts in ecosystems is of high relevance to policymakers, but difficult to quantify using data from singular cases. We present causalizeR (https://github.com/fjmurguzur/causalizeR), a text-processing algorithm that extracts causal relations from literature based on simple grammatical rules that can be used to synthesize evidence in unstructured texts in a structured manner. The algorithm extracts causal links using the relative position of nouns relative to the keyword of choice to extract the cause and effects of interest. The resulting database can be combined with network analysis tools to estimate the direct and indirect effects of multiple drivers at the network level, which is useful for synthesizing available knowledge and for hypothesis creation and testing. We illustrate the use of the algorithm by detecting causal relationships in scientific literature relating to the tundra ecosystem.


2021 ◽  
Vol 13 (13) ◽  
pp. 2571
Author(s):  
Olivia Azevedo ◽  
Thomas C. Parker ◽  
Matthias B. Siewert ◽  
Jens-Arne Subke

Soils represent the largest store of carbon in the biosphere with soils at high latitudes containing twice as much carbon (C) than the atmosphere. High latitude tundra vegetation communities show increases in the relative abundance and cover of deciduous shrubs which may influence net ecosystem exchange of CO2 from this C-rich ecosystem. Monitoring soil respiration (Rs) as a crucial component of the ecosystem carbon balance at regional scales is difficult given the remoteness of these ecosystems and the intensiveness of measurements that is required. Here we use direct measurements of Rs from contrasting tundra plant communities combined with direct measurements of aboveground plant productivity via Normalised Difference Vegetation Index (NDVI) to predict soil respiration across four key vegetation communities in a tundra ecosystem. Soil respiration exhibited a nonlinear relationship with NDVI (y = 0.202e3.508 x, p < 0.001). Our results further suggest that NDVI and soil temperature can help predict Rs if vegetation type is taken into consideration. We observed, however, that NDVI is not a relevant explanatory variable in the estimation of SOC in a single-study analysis.


2021 ◽  
Author(s):  
Laura Helene Rasmussen ◽  
Wenxin Zhang ◽  
Per Ambus ◽  
Per-Erik Jansson ◽  
Barbara Kitzler ◽  
...  

Abstract Future Arctic tundra primary productivity and vegetation community composition will partly be determined by nitrogen (N) availability in a warmer climate. N mineralization rates are predicted to increase in winter and summer, but because N demand and –mobility varies across seasons, the fate of mineralized N remains uncertain. N mineralized in winter is released in a “pulse” upon snowmelt and soil thaw, with the potential for lateral redistribution in the landscape. In summer, the release is into an active rhizosphere with high local biological N demand. In this study, we investigated the ecosystem sensitivity to increased lateral N input and near-surface warming, respectively and in combination, with a numerical ecosystem model (CoupModel) parameterized to simulate ecosystem biogeochemistry for a tundra heath ecosystem in West Greenland. Both model and measurements indicated that plants were poor utilizers of increased early-season lateral N input, indicating that higher winter N mineralization rates may have limited influence on plant growth and carbon (C) sequestration for a hillslope ecosystem. The model further suggested that, although deciduous shrubs were the plant type with overall most lateral N gain, evergreen shrubs had a comparative advantage utilizing early-season N. In contrast, near-surface summer warming increased plant biomass and N uptake, moving N from soil to plant N pools, and offered an advantage to deciduous plants. Neither simulated high lateral N fluxes nor near-surface soil warming suggests that mesic tundra heaths will be important sources of N2O under warmer conditions. Our work highlights how winter and summer warming may play different roles in tundra ecosystem N and C budgets depending on plant community composition.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Courtney G. Collins ◽  
Sarah C. Elmendorf ◽  
Robert D. Hollister ◽  
Greg H. R. Henry ◽  
Karin Clark ◽  
...  

AbstractRapid climate warming is altering Arctic and alpine tundra ecosystem structure and function, including shifts in plant phenology. While the advancement of green up and flowering are well-documented, it remains unclear whether all phenophases, particularly those later in the season, will shift in unison or respond divergently to warming. Here, we present the largest synthesis to our knowledge of experimental warming effects on tundra plant phenology from the International Tundra Experiment. We examine the effect of warming on a suite of season-wide plant phenophases. Results challenge the expectation that all phenophases will advance in unison to warming. Instead, we find that experimental warming caused: (1) larger phenological shifts in reproductive versus vegetative phenophases and (2) advanced reproductive phenophases and green up but delayed leaf senescence which translated to a lengthening of the growing season by approximately 3%. Patterns were consistent across sites, plant species and over time. The advancement of reproductive seasons and lengthening of growing seasons may have significant consequences for trophic interactions and ecosystem function across the tundra.


Sign in / Sign up

Export Citation Format

Share Document