atmospheric carbon dioxide concentration
Recently Published Documents


TOTAL DOCUMENTS

95
(FIVE YEARS 8)

H-INDEX

24
(FIVE YEARS 2)

2021 ◽  
pp. 5-16
Author(s):  
Kneev Sharma ◽  
Dimitre Karamanev

Understanding the fundamental relationship between atmospheric carbon dioxide concentration and temperature rise is essential for tackling the problem of climate change that faces us today. Misconceptions regarding the relationship are widespread due to media and political influences. This investigation aims to address the popular misconception that CO2 concentration directly and naturally leads to global temperature rise. While anthropogenic CO2 emissions seem to affect the rising global atmospheric temperature with a confidence of 95%, it falters when the historical relationship using ice core data is studied. This investigation uses two statistical approaches to determine an accurate range and direction for this important relationship. Through a combined approach, it was found that historically CO2 concentration in the last 650 000 years lags global temperature rise by 1020-1080 years with a maximum correlation coefficient of 0.8371-0.8372. This result is important for the investigation of climate change.


2021 ◽  
Author(s):  
Dawn L. Woodard ◽  
Alexey N. Shiklomanov ◽  
Ben Kravitz ◽  
Corinne Hartin ◽  
Ben Bond-Lamberty

Abstract. Permafrost, soil that remains below 0 °C for two or more years, currently stores more than a fourth of global soil carbon. A warming climate makes this carbon increasingly vulnerable to decomposition and release into the atmosphere in the form of greenhouse gases. The resulting climate feedback can be estimated using Earth system models (ESMs), but the high complexity and computational cost of these models make it challenging to use them for estimating uncertainty, exploring novel scenarios, and coupling with other models. We have added a representation of permafrost to the simple, open-source global carbon-climate model Hector, calibrated to be consistent with both historical data and twenty-first century ESM projections of permafrost thaw. We include permafrost as a separate land carbon pool that becomes available for decomposition into both methane and carbon dioxide once thawed; the thaw rate is controlled by region-specific air temperature increases from a pre-industrial baseline. We found that by 2100 thawed permafrost carbon emissions increased Hector's atmospheric carbon dioxide concentration by 10–15 % and the atmospheric methane concentration by 10–20 %, depending on the future scenario. This resulted in around 0.5 °C of additional warming over the next century. The fraction of thawed permafrost carbon available for decomposition was the most significant parameter controlling the end-of-century temperature change and atmospheric carbon dioxide concentration in the model and became increasingly significant over even longer timescales. The addition of permafrost in Hector provides a basis for the exploration of a suite of science questions, as Hector can be cheaply run over a wide range of parameter values to explore uncertainty and easily coupled with integrated assessment models to explore the economic consequences of warming from this feedback.


2020 ◽  
Author(s):  
Tiehan Zhou ◽  
Kevin DallaSanta ◽  
Larissa Nazarenko ◽  
Gavin A. Schmidt

Abstract. Stratospheric radiative damping increases as atmospheric carbon dioxide concentration rises. We use the one-dimensional mechanistic models of the QBO to conduct sensitivity experiments and find that when atmospheric carbon dioxide concentration increases, the simulated QBO period shortens due to the enhancing of radiative damping in the stratosphere. This result suggests that increasing stratospheric radiative damping due to rising CO2 may play a role in determining the QBO period in a warming climate along with wave momentum flux entering the stratosphere and tropical vertical residual velocity, both of which also respond to increasing CO2.


2019 ◽  
Vol 46 (8) ◽  
pp. 0810001
Author(s):  
李文冬 Wendong Li ◽  
刘继桥 Jiqiao Liu ◽  
朱亚丹 Yadan Zhu ◽  
陈卫标 Weibiao Chen

Sign in / Sign up

Export Citation Format

Share Document