Comparison of the projection onto convex sets and iterative hard thresholding methods for seismic data interpolation and denoising

2018 ◽  
Vol 49 (6) ◽  
pp. 825-832 ◽  
Author(s):  
Benfeng Wang ◽  
Chenglong Gu
Geophysics ◽  
2021 ◽  
pp. 1-57
Author(s):  
Yang Liu ◽  
Geng WU ◽  
Zhisheng Zheng

Although there is an increase in the amount of seismic data acquired with wide-azimuth geometry, it is difficult to achieve regular data distributions in spatial directions owing to limitations imposed by the surface environment and economic factor. To address this issue, interpolation is an economical solution. The current state of the art methods for seismic data interpolation are iterative methods. However, iterative methods tend to incur high computational cost which restricts their application in cases of large, high-dimensional datasets. Hence, we developed a two-step non-iterative method to interpolate nonstationary seismic data based on streaming prediction filters (SPFs) with varying smoothness in the time-space domain; and we extended these filters to two spatial dimensions. Streaming computation, which is the kernel of the method, directly calculates the coefficients of nonstationary SPF in the overdetermined equation with local smoothness constraints. In addition to the traditional streaming prediction-error filter (PEF), we proposed a similarity matrix to improve the constraint condition where the smoothness characteristics of the adjacent filter coefficient change with the varying data. We also designed non-causal in space filters for interpolation by using several neighboring traces around the target traces to predict the signal; this was performed to obtain more accurate interpolated results than those from the causal in space version. Compared with Fourier Projection onto a Convex Sets (POCS) interpolation method, the proposed method has the advantages such as fast computational speed and nonstationary event reconstruction. The application of the proposed method on synthetic and nonstationary field data showed that it can successfully interpolate high-dimensional data with low computational cost and reasonable accuracy even in the presence of aliased and conflicting events.


Geophysics ◽  
2006 ◽  
Vol 71 (6) ◽  
pp. E91-E97 ◽  
Author(s):  
Ray Abma ◽  
Nurul Kabir

Seismic surveys generally have irregular areas where data cannot be acquired. These data should often be interpolated. A projection onto convex sets (POCS) algorithm using Fourier transforms allows interpolation of irregularly populated grids of seismic data with a simple iterative method that produces high-quality results. The original 2D image restoration method, the Gerchberg-Saxton algorithm, is extended easily to higher dimensions, and the 3D version of the process used here produces much better interpolations than typical 2D methods. The only parameter that makes a substantial difference in the results is the number of iterations used, and this number can be overestimated without degrading the quality of the results. This simplicity is a significant advantage because it relieves the user of extensive parameter testing. Although the cost of the algorithm is several times the cost of typical 2D methods, the method is easily parallelized and still completely practical.


2016 ◽  
Vol 130 ◽  
pp. 194-208 ◽  
Author(s):  
Shuwei Gan ◽  
Shoudong Wang ◽  
Yangkang Chen ◽  
Xiaohong Chen ◽  
Weiling Huang ◽  
...  

2020 ◽  
Vol 1631 ◽  
pp. 012110
Author(s):  
Xiaoguo Xie ◽  
Shuling Pan ◽  
Bing Luo ◽  
Cailing Chen ◽  
Kai Chen

Sign in / Sign up

Export Citation Format

Share Document