Seismic data interpolation without iteration using t-x-y streaming prediction filter with varying smoothness

Geophysics ◽  
2021 ◽  
pp. 1-57
Author(s):  
Yang Liu ◽  
Geng WU ◽  
Zhisheng Zheng

Although there is an increase in the amount of seismic data acquired with wide-azimuth geometry, it is difficult to achieve regular data distributions in spatial directions owing to limitations imposed by the surface environment and economic factor. To address this issue, interpolation is an economical solution. The current state of the art methods for seismic data interpolation are iterative methods. However, iterative methods tend to incur high computational cost which restricts their application in cases of large, high-dimensional datasets. Hence, we developed a two-step non-iterative method to interpolate nonstationary seismic data based on streaming prediction filters (SPFs) with varying smoothness in the time-space domain; and we extended these filters to two spatial dimensions. Streaming computation, which is the kernel of the method, directly calculates the coefficients of nonstationary SPF in the overdetermined equation with local smoothness constraints. In addition to the traditional streaming prediction-error filter (PEF), we proposed a similarity matrix to improve the constraint condition where the smoothness characteristics of the adjacent filter coefficient change with the varying data. We also designed non-causal in space filters for interpolation by using several neighboring traces around the target traces to predict the signal; this was performed to obtain more accurate interpolated results than those from the causal in space version. Compared with Fourier Projection onto a Convex Sets (POCS) interpolation method, the proposed method has the advantages such as fast computational speed and nonstationary event reconstruction. The application of the proposed method on synthetic and nonstationary field data showed that it can successfully interpolate high-dimensional data with low computational cost and reasonable accuracy even in the presence of aliased and conflicting events.

Geophysics ◽  
2021 ◽  
pp. 1-52
Author(s):  
Nanying Lan ◽  
Zhang Fanchang ◽  
Chuanhui Li

Due to the limitations imposed by acquisition cost, obstacles, and inaccessible regions, the originally acquired seismic data are often sparsely or irregularly sampled in space, which seriously affects the ability of seismic data to image under-ground structures. Fortunately, compressed sensing provides theoretical support for interpolating and recovering irregularly or under-sampled data. Under the framework of compressed sensing, we propose a robust interpolation method for high-dimensional seismic data, based on elastic half norm regularization and tensor dictionary learning. Inspired by the Elastic-Net, we first develop the elastic half norm regularization as a sparsity constraint, and establish a robust high-dimensional interpolation model with this technique. Then, considering the multi-dimensional structure and spatial correlation of seismic data, we introduce a tensor dictionary learning algorithm to train a high-dimensional adaptive tensor dictionary from the original data. This tensor dictionary is used as the sparse transform for seismic data interpolation because it can capture more detailed seismic features to achieve the optimal and fast sparse representation of high-dimensional seismic data. Finally, we solve the robust interpolation model by an efficient iterative thresholding algorithm in the transform space and perform the space conversion by a modified imputation algorithm to recover the wavefields at the unobserved spatial positions. We conduct high-dimensional interpolation experiments on model and field seismic data on a regular data grid. Experimental results demonstrate that, this method has superior performance and higher computational efficiency in both noise-free and noisy seismic data interpolation, compared to extensively utilized dictionary learning-based interpolation methods.


Geophysics ◽  
2020 ◽  
Vol 85 (4) ◽  
pp. WA115-WA136 ◽  
Author(s):  
Hao Zhang ◽  
Xiuyan Yang ◽  
Jianwei Ma

We have developed an interpolation method based on the denoising convolutional neural network (CNN) for seismic data. It provides a simple and efficient way to break through the problem of the scarcity of geophysical training labels that are often required by deep learning methods. This new method consists of two steps: (1) training a set of CNN denoisers to learn denoising from natural image noisy-clean pairs and (2) integrating the trained CNN denoisers into the project onto convex set (POCS) framework to perform seismic data interpolation. We call it the CNN-POCS method. This method alleviates the demands of seismic data that require shared similar features in the applications of end-to-end deep learning for seismic data interpolation. Additionally, the adopted method is flexible and applicable for different types of missing traces because the missing or down-sampling locations are not involved in the training step; thus, it is of a plug-and-play nature. These indicate the high generalizability of the proposed method and a reduction in the necessity of problem-specific training. The primary results of synthetic and field data show promising interpolation performances of the adopted CNN-POCS method in terms of the signal-to-noise ratio, dealiasing, and weak-feature reconstruction, in comparison with the traditional [Formula: see text]-[Formula: see text] prediction filtering, curvelet transform, and block-matching 3D filtering methods.


Geophysics ◽  
2021 ◽  
pp. 1-92
Author(s):  
Yangkang Chen ◽  
Sergey Fomel ◽  
Hang Wang ◽  
shaohuan zu

The prediction error filter (PEF) assumes that the seismic data can be destructed to zero by applying a convolutional operation between the target data and prediction filter in either time-space or frequency-space domain. Here, we extend the commonly known PEF in 2D or 3D problems to its 5D version. To handle the non-stationary property of the seismic data, we formulate the PEF in a non-stationary way, which is called the non-stationary prediction error filter (NPEF). In the NPEF, the coefficients of a fixed-size PEF vary across the whole seismic data. In NPEF, we aim at solving a highly ill-posed inverse problem via the computationally efficient iterative shaping regularization. The NPEF can be used to denoise multi-dimensional seismic data, and more importantly, to restore the highly incomplete aliased 5D seismic data. We compare the proposed NPEF method with the state-of-the-art rank-reduction method for the 5D seismic data interpolation in cases of irregularly and regularly missing traces via several synthetic and real seismic data. Results show that although the proposed NPEF method is less effective than the rank-reduction method in interpolating irregularly missing traces especially in the case of low signal to noise ratio (S/N), it outperforms the rank-reduction method in interpolating aliased 5D dataset with regularly missing traces.


2018 ◽  
Author(s):  
Xie Junfa ◽  
Wang Xiaowei ◽  
Wang Yuchao ◽  
Hu Ziduo ◽  
Zhang Tao

Geophysics ◽  
2010 ◽  
Vol 75 (6) ◽  
pp. WB225-WB234 ◽  
Author(s):  
Juefu Wang ◽  
Mark Ng ◽  
Mike Perz

We propose a greedy inversion method for a spatially localized, high-resolution Radon transform. The kernel of the method is based on a conventional iterative algorithm, conjugate gradient (CG), but is utilized adaptively in amplitude-prioritized local model spaces. The adaptive inversion introduces a coherence-oriented mechanism to enhance focusing of significant model parameters, and hence increases the model resolution and convergence rate. We adopt the idea in a time-space domain local linear Radon transform for data interpolation. We find that the local Radon transform involves iteratively applying spatially localized forward and adjoint Radon operators to fit the input data. Optimal local Radon panels can be found via a subspace algorithm which promotes sparsity in the model, and the missing data can be predicted using the resulting local Radon panels. The subspacing strategy greatly reduces the cost of computing local Radon coefficients, thereby reducing the total cost for inversion. The method can handle irregular and regular geometries and significant spatial aliasing. We compare the performance of our method using three simple synthetic data sets with a popular interpolation method known as minimum weighted norm Fourier interpolation, and show the advantage of the new algorithm in interpolating spatially aliased data. We also test the algorithm on the 2D synthetic data and a field data set. Both tests show that the algorithm is a robust antialiasing tool, although it cannot completely recover missing strongly curved events.


2021 ◽  
Vol 18 (4) ◽  
pp. 529-538
Author(s):  
Liyan Zhang ◽  
Ang Li ◽  
Jianguo Yang ◽  
Shichao Li ◽  
Yulai Yao ◽  
...  

Abstract To improve the imaging quality of wide-azimuth seismic data and enhance the uniformity of the attributes between adjacent bins, we developed a novel interpolation method in the offset-vector tiles (OVT) domain for wide-azimuth data. The orthogonal matching pursuit (OMP) interpolation method based on the Fourier transform is a frequency-domain processing technique based on discrete Fourier interpolation that achieves the goal of anti-aliasing by extracting the weight factor in the effective band from low-frequency data without aliasing. For data reconstruction, the OMP-based data interpolation technique in the OVT domain comprehensively uses the seismic data in five dimensions: the vertical and horizontal coordinates, time, offset and azimuth. Compared with conventional three-dimensional data interpolation, five-dimensional interpolation in the OVT domain is more accurate and achieves better results in practical applications.


Sign in / Sign up

Export Citation Format

Share Document