VIGS technology: an attractive tool for functional genomics studies in legumes

2013 ◽  
Vol 40 (12) ◽  
pp. 1234 ◽  
Author(s):  
Stéphanie Pflieger ◽  
Manon M. S. Richard ◽  
Sophie Blanchet ◽  
Chouaib Meziadi ◽  
Valérie Geffroy

Legume species are among the most important crops worldwide. In recent years, six legume genomes have been completely sequenced, and there is now an urgent need for reverse-genetics tools to validate genes affecting yield and product quality. As most legumes are recalcitrant to stable genetic transformation, virus-induced gene silencing (VIGS) appears to be a powerful alternative technology for determining the function of unknown genes. VIGS technology is based on the property of plant viruses to trigger a defence mechanism related to post-transcriptional gene silencing (PTGS). Infection by a recombinant virus carrying a fragment of a plant target gene will induce homology-dependent silencing of the endogenous target gene. Several VIGS systems have been developed for legume species since 2004, including those based on Bean pod mottle virus, Pea early browning virus, and Apple latent spherical virus, and used in reverse-genetics studies of a wide variety of plant biological processes. In this work, we give an overview of the VIGS systems available for legumes, and present their successful applications in functional genomics studies. We also discuss the limitations of these VIGS systems and the future challenges to be faced in order to use VIGS to its full potential in legume species.

2012 ◽  
Vol 10 (8) ◽  
pp. 970-978 ◽  
Author(s):  
Xianbao Deng ◽  
Paula Elomaa ◽  
Cuong X. Nguyen ◽  
Timo Hytönen ◽  
Jari P. T. Valkonen ◽  
...  

2004 ◽  
Vol 40 (4) ◽  
pp. 622-631 ◽  
Author(s):  
Gabriela D. Constantin ◽  
Britta N. Krath ◽  
Stuart A. MacFarlane ◽  
Mogens Nicolaisen ◽  
Ida Elisabeth Johansen ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Takuya Ogata ◽  
Masami Toyoshima ◽  
Chihiro Yamamizo-Oda ◽  
Yasufumi Kobayashi ◽  
Kenichiro Fujii ◽  
...  

Quinoa (Chenopodium quinoa), native to the Andean region of South America, has been recognized as a potentially important crop in terms of global food and nutrition security since it can thrive in harsh environments and has an excellent nutritional profile. Even though challenges of analyzing the complex and heterogeneous allotetraploid genome of quinoa have recently been overcome, with the whole genome-sequencing of quinoa and the creation of genotyped inbred lines, the lack of technology to analyze gene function in planta is a major limiting factor in quinoa research. Here, we demonstrate that two virus-mediated transient expression techniques, virus-induced gene silencing (VIGS) and virus-mediated overexpression (VOX), can be used in quinoa. We show that apple latent spherical virus (ALSV) can induce gene silencing of quinoa phytoene desaturase (CqPDS1) in a broad range of quinoa inbred lines derived from the northern and southern highland and lowland sub-populations. In addition, we show that ALSV can be used as a VOX vector in roots. Our data also indicate that silencing a quinoa 3,4-dihydroxyphenylalanine 4,5-dioxygenase gene (CqDODA1) or a cytochrome P450 enzyme gene (CqCYP76AD1) inhibits betalain production and that knockdown of a reduced-height gene homolog (CqRHT1) causes an overgrowth phenotype in quinoa. Moreover, we show that ALSV can be transmitted to the progeny of quinoa plants. Thus, our findings enable functional genomics in quinoa, ushering in a new era of quinoa research.


2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Turgay Unver ◽  
Hikmet Budak

Virus-induced gene silencing (VIGS) is one of the reverse genetics tools for analysis of gene function that uses viral vectors carrying a target gene fragment to produce dsRNA which trigger RNA-mediated gene silencing. There are a number of viruses which have been modified to silence the gene of interest effectively with a sequence-specific manner. Therefore, different types of methodologies have been advanced and modified for VIGS approach. Virus-derived inoculations are performed on host plants using different methods such as agro-infiltration and in vitro transcriptions. VIGS has many advantages compared to other loss-of-gene function approaches. The approach provides the generation of rapid phenotype and no need for plant transformation. The cost of VIGS experiment is relatively low, and large-scale analysis of screening studies can be achieved by the VIGS. However, there are still limitations of VIGS to be overcome. Nowadays, many virus-derived vectors are optimized to silence more than one host plant such as TRV-derived viral vectors which are used for Arabidopsis and Nicothiana benthamiana. By development of viral silencing systems monocot plants can also be targeted as silencing host in addition to dicotyledonous plants. For instance, Barley stripe mosaic virus (BSMV)-mediated VIGS allows silencing of barley and wheat genes. Here we summarize current protocols and recent modified viral systems to lead silencing of genes in different host species.


2016 ◽  
Vol 106 (10) ◽  
pp. 1231-1239 ◽  
Author(s):  
Vincent N. Fondong ◽  
Ugrappa Nagalakshmi ◽  
Savithramma P. Dinesh-Kumar

Advances in functional genomics and genome editing approaches have provided new opportunities and potential to accelerate plant virus control efforts through modification of host and viral genomes in a precise and predictable manner. Here, we discuss application of RNA-based technologies, including artificial micro RNA, transacting small interfering RNA, and Cas9 (clustered regularly interspaced short palindromic repeat–associated protein 9), which are currently being successfully deployed in generating virus-resistant plants. We further discuss the reverse genetics approach, targeting induced local lesions in genomes (TILLING) and its variant, known as EcoTILLING, that are used in the identification of plant virus recessive resistance gene alleles. In addition to describing specific applications of these technologies in plant virus control, this review discusses their advantages and limitations.


Author(s):  
Sunny Dhir ◽  
Ashish Srivastava ◽  
Nobiyuki Yoshikawa ◽  
S. M. Paul Khurana

Sign in / Sign up

Export Citation Format

Share Document